[1] N. Lior, Energy resources and use:the present situation and possible paths to the future, Energy 33(2008) 842-857. [2] Y. Jin, Y. Cheng, Chemical engineering in China:past, present and future, AIChE J. 57(2011) 552-560. [3] C. Karakosta, C. Pappas, V. Marinakis, J. Psarras, Renewable energy and nuclear power towards sustainable development:characteristics and prospects, Renew. Sust. Energ. Rev. 22(2013) 187-197. [4] X. Wang, L. Du, Study on carbon capture and storage (CCS) investment decision-making based on real options for China's coal-fired power plants, J. Clean. Prod. 112(2016) 4123-4131. [5] C. McGlade, P. Ekins, The geographical distribution of fossil fuels unused when limiting global warming to 2 C, Nature 517(2015) 187-190. [6] S.S. Seyitoglu, I. Dincer, A. Kilicarslan, Energy and exergy analyses of hydrogen production by coal gasification, Int. J. Hydrogen Energ. 42(2017) 2592-2600. [7] Z. Du, C. Li, W. Sun, J. Wang, A simulation of diesel hydrotreating process with real component method, Chin. J. Chem. Eng. 23(2015) 780-788. [8] X. Yan, W. Zheng, X. Ruan, Y. Pan, X. Wu, G. He, The control and optimization of macro/micro-structure of ion conductive membranes for energy conversion and storage, Chin. J. Chem. Eng. 24(2016) 558-571. [9] J. Ren, S. Gao, S. Tan, L. Dong, A. Scipioni, A. Mazzi, Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China, Renew. Sust. Energ. Rev. 41(2015) 1217-1229. [10] W. Han, G. Zhang, J. Xiao, P. Bénard, R. Chahine, Demonstrations and marketing strategies of hydrogen fuel cell vehicles in China, Int. J. Hydrogen Energ. 39(2014) 13859-13872. [11] H. Koten, Hydrogen effects on the diesel engine performance and emissions, Int. J. Hydrogen Energ. 43(2018) 10511-10519. [12] K. Yuan, W. Lin, Hydrogen in China:Policy, program and progress, Int. J. Hydrogen Energ. 35(2010) 3110-3113. [13] X. Kong, W. Zhong, W. Du, F. Qian, Three stage equilibrium model for coal gasification in entrained flow gasifiers based on Aspen Plus, Chin. J. Chem. Eng. 21(2013) 79-84. [14] T.L. LeValley, A.R. Richard, M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies-a review, Int. J. Hydrogen Energ. 39(2014) 16983-17000. [15] L. Gradisher, B. Dutcher, M. Fan, Catalytic hydrogen production from fossil fuels via the water gas shift reaction, Appl. Energ. 139(2015) 335-349. [16] P.J. Robinson, W.L. Luyben, Integrated gasification combined cycle dynamic model:H2S absorption/stripping, water-gas shift reactors, and CO2 absorption/stripping, Ind. Eng. Chem. Res. 49(2010) 4766-4781. [17] B. Liu, A. Goldbach, H. Xu, Sour water-gas shift reaction over Pt/CeO2 catalysts, Catal. Today 171(2011) 304-311. [18] N.E. Amadeo, M.A. Laborde, Hydrogen production from the low-temperature water-gas shift reaction:Kinetics and simulation of the industrial reactor, Int. J. Hydrogen Energ. 20(1995) 949-956. [19] R.F. Buswell, J.V. Clausi, C. Louie, Two-stage water gas shift conversion method, US Pat. 5464606(1995). [20] W.H. Chen, M.R. Lin, T.L. Jiang, M.H. Chen, Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions, Int. J. Hydrogen Energ. 33(2008) 6644-6656. [21] J. Huang, I. Dincer, Parametric analysis and assessment of a coal gasification plant for hydrogen production, Int. J. Hydrogen Energ. 39(2014) 3294-3303. [22] A. Alijani, A. Irankhah, Medium-temperature shift catalysts for hydrogen purification in a single-stage reactor, Chem. Eng. Technol. 36(2013) 209-219. [23] F.V. Lopes, C.A. Grande, A.E. Rodrigues, Fast-cycling VPSA for hydrogen purification, Fuel 93(2012) 510-523. [24] W. Tao, S. Ma, J. Xiao, P. Bénard, R. Chahine, Simulation and optimization for hydrogen purification performance of vacuum pressure swing adsorption, Energy Procedia 158(2019) 1917-1923. [25] W. Shi, H. Yang, Y. Shen, Q. Fu, D. Zhang, B. Fu, Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR), Int. J. Hydrogen Energ. 43(2018) 19057-19074. [26] M. Liszka, T. Malik, G. Manfrida, Energy and exergy analysis of hydrogenoriented coal gasification with CO2 capture, Energy 45(2012) 142-150. [27] S.H. Jeon, M.S. Kim, Compressor selection methods for multi-stage reliquefaction system of liquefied CO2 transport ship for CCS, Appl. Therm. Eng. 82(2015) 360-367. [28] J.F.D. Tapia, J.Y. Lee, R.E. Ooi, D.C. Foo, R.R. Tan, Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations, Appl. Energ. 184(2016) 337-345. [29] Q. Li, Z.A. Chen, J.T. Zhang, L.C. Liu, X.C. Li, L. Jia, Positioning and revision of CCUS technology development in China, Int. J. Greenh. Gas Con. 46(2016) 282-293. [30] F. Li, L. Zeng, L.S. Fan, Techno-economic analysis of coal-based hydrogen and electricity cogeneration processes with CO2 capture, Ind. Eng. Chem. Res. 49(2010) 11018-11028. [31] X. Ruan, L. Wang, Y. Dai, N. Zhang, X. Yan, G. He, Effective reclamation of vent gas in ethylbenzene dehydrogenation by coupling multi-stage circle absorption and membrane units, Sep. Purif. Technol. 168(2016) 265-274. [32] P.W. Kramer, M.K. Murphy, D.J. Stookey, J.M. Henis, E.R. Stedronsky, Membranes having enhanced selectivity and method of producing such membranes, US Pat. 5215554(1993). [33] R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res. 41(2002) 1393-1411. [34] X. Ruan, H. Xiao, J. Shou, A. Huang, W. Xiao, G. He, Membrane separation system for coal-fired flue gas reclamation:process planning and initial design, Can. J. Chem. Eng. 97(2019) 717-726. [35] H. Lin, Z. He, Z. Sun, J. Vu, A. Ng, M. Mohammed, J. Kniep, T.C. Merkel, T. Wu, R. C. Lambrecht, CO2-selective membranes for hydrogen production and CO2 capture-part I:membrane development, J. Membr. Sci. 457(2014) 149-161. [36] H. Lin, Z. He, Z. Sun, J. Kniep, A. Ng, R.W. Baker, T.C. Merkel, CO2-selective membranes for hydrogen production and CO2 capture-part II:Technoeconomic analysis, J. Membr. Sci. 493(2015) 794-806. [37] X. Ruan, X. Zhang, X. Liao, X. Jiang, Y. Dai, X. Yan, G. He, Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn (II)-doped polydopamine modification, J. Membr. Sci. 541(2017) 101-107. [38] M. Yu, H.H. Funke, R.D. Noble, J.L. Falconer, H2 separation using defect-free, inorganic composite membranes, J. Am. Chem. Soc. 133(2011) 1748-1750. [39] H. Song, S. Zhao, J. Chen, H. Qi, Hydrothermally stable Zr-doped organosilica membranesforH2/CO2separation, Micropor. Mesopor. Mat.224(2016)277-284. [40] N. Wang, A. Mundstock, Y. Liu, A. Huang, J. Caro, Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation, Chem. Eng. Sci. 124(2015) 27-36. [41] M.W. Ackley, Multilayer adsorbent beds for PSA gas separation, US Pat. 6152991(2000). [42] H. Li, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Modelling and simulation of twobed PSA process for separating H2 from methane steam reforming, Chin. J. Chem. Eng. 27(2019) 1870-1878. [43] X. Ruan, H. Xiao, X. Jiang, X. Yan, Y. Dai, G. He, Graphic synthesis method for multi-technique integration separation sequences of multi-input refinery gases, Sep. Purif. Technol. 214(2019) 187-195. [44] B. Li, G. He, X. Jiang, Y. Dai, X. Ruan, Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery, Front. Chem. Sci. Eng. 10(2016) 255-264. [45] F.V. Lopes, C.A. Grande, A.E. Rodrigues, Activated carbon for hydrogen purification by pressure swing adsorption:Multicomponent breakthrough curves and PSA performance, Chem. Eng. Sci. 66(2011) 303-317. [46] L. Jiang, V.G. Fox, L.T. Biegler, Simulation and optimal design of multiple-bed pressure swing adsorption systems, AIChE J. 50(2004) 2904-2917. [47] L. Jiang, L.T. Biegler, V.G. Fox, Simulation and optimization of pressure-swing adsorption systems for air separation, AIChE J. 49(2003) 1140-1157. [48] T. Katoh, M. Tokumura, H. Yoshikawa, Y. Kawase, Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module:Nonideal mixing flows in permeate and residue sides using the tanks-in-series model, Sep. Purif. Technol. 76(2011) 362-372. [49] D.T. Coker, B.D. Freeman, G.K. Fleming, Modeling multicomponent gas separation using hollow-fiber membrane contactors, AIChE J. 44(1998) 1289-1302. [50] P. Cruz, J.C. Santos, F.D. Magalhães, A. Mendes, Simulation of separation processes using finite volume method, Comput. Chem. Eng. 30(2005) 83-98. [51] X. Ruan, G. He, B. Li, X. Yan, Y. Dai, Chemical potential analysis for directing the optimal design of gas membrane separation frameworks, Chem. Eng. Sci. 107(2014) 245-255. [52] V. Spallina, D. Pandolfo, A. Battistella, M.C. Romano, M. van Sint Annaland, F. Gallucci, Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture, Energy Convers. Manag. 120(2016) 257-273. |