[1] M. Xu, D. Yu, H. Yao, X. Liu, Y. Qiao, Coal combustion-generated aerosols:Formation and properties, Proc. Combust. Inst. 33(2011) 1681-1697. [2] D. Yu, M. Xu, H. Yao, J. Sui, X. Liu, Y. Yu, Q. Cao, Use of elemental size distributions in identifying particle formation modes, Proc. Combust. Inst. 31(2007) 1921-1928. [3] S. Chen, S. Li, J.S. Marshall, Exponential scaling in early-stage agglomeration of adhesive particles in turbulence, Phys. Rev. Fluids 4(2) (2019) 024304. [4] S. Chen, S. Li, Collision-induced breakage of agglomerates in homogenous isotropic turbulence laden with adhesive particles, J. Fluid Mech. 902(2020) A28. [5] H. Wang, J. Qiu, C. Zheng, SO2 formation characteristics of coal in O2/CO2 mixture, J. Huazhong Univ. Sci. Technol. 30(1) (2002) 100-102. [6] Y. Zhang, J. Zhu, Q. Lyu, J. Liu, F. Pan, J. Zhang, The ultra-low NOx emission characteristics of pulverized coal combustion after high temperature preheating, Fuel 277(2020) 118050. [7] M. Xu, Y. Qiao, C. Zheng, L. Li, J. Liu, Modeling of homogeneous mercury speciation using detailed chemical kinetics, Combust. Flame 132(1/2) (2003) 208-218. [8] D.R. Gentner, S.H. Jathar, T.D. Gordon, R. Bahreini, D.A. Day, I. El Haddad, P.L. Hayes, S.M. Pieber, S.M. Platt, J. de Gouw, A.H. Goldstein, Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions, Environ. Sci. Technol. 51(3) (2017) 1074-1093. [9] R. Atkinson, Atmospheric chemistry of VOCs and NOx, Atmos. Environ. 34(12-14) (2000) 2063-2101. [10] S. Solomon, Stratospheric ozone depletion:A review of concepts and history, Rev. Geophys. 37(3) (1999) 275-316. [11] J. Xu, Y. Zhang, J.S. Fu, S. Zheng, W. Wang, Process analysis of typical summertime ozone episodes over the Beijing area, Sci. Total Environ. 399(1-3) (2008) 147-157. [12] Y.H. Zhang, H. Su, L.J. Zhong, Y.F. Cheng, L.M. Zeng, X.S. Wang, Y.R. Xiang, J.L. Wang, D.F. Gao, M. Shao, S.J. Fan, Regional ozone pollution and observationbased approach for analyzing ozone-precursor relationship during the PRIDEPRD2004 campaign, Atmos. Environ. 42(25) (2008) 6203-6218. [13] M. Shao, S. Lu, Y. Liu, X. Xie, C. Chang, S. Huang, Z. Chen, Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation, J. Geophys. Res.-Atmos. 114(2009) D00G06. [14] M. Shao, Y. Zhang, L. Zeng, X. Tang, J. Zhang, L. Zhong, B. Wang, Ground-level ozone in the Pearl River Delta and the roles of VOC and NOx in its production, J. Environ. Manage. 90(1) (2009) 512-518. [15] J.H. Seinfeld, J.F. Pankow, Organic atmospheric particulate material, Annu. Rev. Phys. Chem. 54(2003) 121-140. [16] J.H. Kroll, J.H. Seinfeld, Chemistry of secondary organic aerosol:Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ. 42(16) (2008) 3593-3624. [17] L.K. Sahu, Volatile organic compounds and their measurements in the troposphere, Curr. Sci. 102(12) (2012) 1645-1649. [18] B. Yuan, W.W. Hu, M. Shao, M. Wang, W.T. Chen, S.H. Lu, L.M. Zeng, M. Hu, VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China, Atmos. Chem. Phys. 13(17) (2013) 8815-8832. [19] K. Badjagbo, S. Sauvé, S. Moore, Real-time continuous monitoring methods for airborne VOCs, TrAC-Trends Anal. Chem. 26(9) (2007) 931-940. [20] S. Lundstedt, Analysis of PAHs and their transformation products in contaminated soil and remedial processes Ph.D. Dissertation, Ume Univ, Kemi, Sweden, 2003. [21] Z. Klimont, D.G. Streets, S. Gupta, J. Cofala, F. Lixin, Y. Ichikawa, Anthropogenic emissions of non-methane volatile organic compounds in China, Atmos. Environ. 36(8) (2002) 1309-1322. [22] M. Wang, M. Shao, S.H. Lu, Y.D. Yang, W.T. Chen, Evidence of coal combustion contribution to ambient VOCs during winter in Beijing, Chin. Chem. Lett. 24(9) (2013) 829-832. [23] J. Garcia, S. Beyne-Masclet, G. Mouvier, P. Masclet, Emissions of volatile organic compounds by coal-fired power stations, Atmos. Environ. Part A:General Topics 26(1992) 1589-1597. [24] G. Fernández-Martınez, P. López-Mahıa, S. Muniategui-Lorenzo, D. PradaRodrıguez, E. Fernandez-Fernandez, Distribution of volatile organic compounds during the combustion process in coal-fired power stations, Atmos. Environ. 35(33) (2001) 5823-5831. [25] G. Fernández-Martínez, J.M. López-Vilariño, P. López-Mahía, S. MuniateguiLorenzo, D. Prada-Rodríguez, E. Fernández-Fernández, Determination of volatile organic compounds in emissions by coal-fired power stations from Spain, Environ. Tech. 22(5) (2001) 567-575. [26] C.Y.M. dos Santos, D. de Almeida Azevedo, F.R. de Aquino Neto, Atmospheric distribution of organic compounds from urban areas near a coal-fired power station, Atmos. Environ. 38(9) (2004) 1247-1257. [27] D. Pudasainee, J.H. Kim, S.H. Lee, J.M. Park, H.N. Jang, G.J. Song, Y.C. Seo, Hazardous air pollutants emission from coal and oil-fired power plants, AsiaPac. J. Chem. Eng. 5(2) (2010) 299-303. [28] J. Shi, H. Deng, Z. Bai, S. Kong, X. Wang, J. Hao, X. Han, P. Ning, Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China, Sci. Total Environ. 515(101-108) (2015) 101-108. [29] Y. Yan, C. Yang, L. Peng, R. Li, H. Bai, Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China, Atmos. Environ. 143(261-269) (2016) 261-269. [30] J. Cheng, J. Liu, T. Wang, Z. Sui, Y. Zhang, W.P. Pan, Reductions in volatile organic compound emissions from coal-fired power plants by combining air pollution control devices and modified fly ash, Energy Fuels 33(4) (2019) 2926-2933. [31] J.F. Pankow, An absorption model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ. 28(1994) 185-188. [32] Y. Xu, X. Liu, Y. Zhang, W. Sun, Z. Zhou, M. Xu, S. Pan, X. Gao, Field measurements on the emission and removal of PM2.5 from coal-fired power stations:3. Direct comparison on the PM removal efficiency of electrostatic precipitators and fabric filters, Energ. Fuel 30(7) (2016) 5930-5936. [33] S. Chen, W. Liu, S. Li, Effect of long-range electrostatic repulsion on pore clogging during microfiltration, Phys. Rev. E 94(6) (2016) 063108. [34] L. Chen, Y. Liao, S. Xin, X. Song, G. Liu, X. Ma, Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas, Fuel 262(2020) 116485. [35] S. Krishnamoorthy, J.P. Baker, M.D. Amiridis, Catalytic oxidation of 1, 2-dichlorobenzene over V2O5/TiO2-based catalysts, Catal. Today 40(1) (1998) 39-46. [36] C.W. Lee, Y. Zhao, S. Lu, W.R. Stevens, Catalytic destruction of a surrogate organic hazardous air pollutant as a potential co-benefit for coal-fired selective catalytic reduction systems, Energy Fuels 30(3) (2016) 2240-2247. [37] E. Finocchio, M. Baldi, G. Busca, C. Pistarino, G. Romezzano, F. Bregani, G.P. Toledo, A study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalysts, Catal. Today 59(3-4) (2000) 261-268. [38] M. Baldi, C. Pistarino, J.G. Amores, V.S. Escribano, E. Finocchio, G. Romezzano, F. Bregani, G.P. Toledo, Evaluation of V2O5-WO3-TiO2 and alternative SCR catalysts in the abatement of VOCs, Catal. Today 53(4) (1999) 525-533. [39] F. Bertinchamps, A. Attianese, M.M. Mestdagh, E.M. Gaigneaux, Catalysts for chlorinated VOCs abatement:Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene, Catal. Today 112(1-4) (2006) 165-168. [40] F. Bertinchamps, M. Treinen, N. Blangenois, E. Mariage, E.M. Gaigneaux, Positive effect of NOx on the performances of VOx/TiO2-based catalysts in the total oxidation abatement of chlorobenzene, J. Catal. 230(2) (2005) 493-498. [41] F. Bertinchamps, M. Treinen, P. Eloy, A.M. Dos Santos, M.M. Mestdagh, E.M. Gaigneaux, Understanding the activation mechanism induced by NOx on the performances of VOx/TiO2 based catalysts in the total oxidation of chlorinated VOCs, Appl. Catal. B-Environ. 70(1-4) (2007) 360-369. [42] W.P.L. Carter, SAPRC atmospheric chemical mechanisms and VOC reactivity scales, https://intra.engr.ucr.edu/~carter/SAPRC/. |