Chinese Journal of Chemical Engineering ›› 2021, Vol. 36 ›› Issue (8): 233-241.DOI: 10.1016/j.cjche.2020.11.021
Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu
Received:
2020-08-31
Revised:
2020-10-22
Online:
2021-09-30
Published:
2021-08-28
Contact:
Zhiqiang Wu
Supported by:
Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu
通讯作者:
Zhiqiang Wu
基金资助:
Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu. Chemical looping gasification of maceral from low-rank coal: Products distribution and kinetic analysis on vitrinite[J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 233-241.
Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu. Chemical looping gasification of maceral from low-rank coal: Products distribution and kinetic analysis on vitrinite[J]. 中国化学工程学报, 2021, 36(8): 233-241.
[1] H.J. Ge, L.H. Shen, H.C. Bai, S.W. Ma, S.Y. Yin, P. Lu, T. Song, Characteristics of zhundong coal ash in hematite-based chemical looping combustion, Energy Fuels 34(7) (2020) 8150-8166. [2] K.Q. Jiang, H. Yu, L.H. Chen, M.X. Fang, M. Azzi, A. Cottrell, K.K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a low-cost, clean coal technology, Appl. Energy 260(2020) 114316. [3] National Energy Administration, 13th Five-Year Plan for Coal Industry Development, 2016. [4] F.F. Hou, Current status and thinking of safe and efficient green development of coal resources, Resour. Inform. Eng. 35(1) (2020) 40-42. [5] T.M. Ismail, L. Ding, K. Ramzy, Numerical and experimental analysis for simulating fuel reactor in chemical looping combustor system, J. Coal Sci. Technol 9(2020) 551-559. [6] S.Y. Chang, J.K. Zhuo, S. Meng, S.Y. Qin, Q. Yao, Clean coal technologies in China:Current status and future perspectives, Engineering 2(4) (2016) 447-459. [7] Z.Q. Wu, B. Zhang, S. Wu, G.M. Li, S.D. Zhao, Y.W. Li, B.L. Yang, Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier:Products distribution and kinetic analysis on gaseous products from cellulose, Fuel Process. Technol. 193(2019) 361-371. [8] L.S. Fan, L. Zeng, S.W. Luo, Chemical-looping technology platform, AIChE J. 61(1) (2015) 2-22. [9] R. Wadhwani, B. Mohanty, Effects of operating pressure on the key parameters of coal direct chemical looping combustion, J. Coal Sci. Technol. 3(1) (2016) 20-27. [10] Q.J. Guo, X.D. Hu, Y.Z. Liu, W.H. Jia, M.M. Yang, M. Wu, H.J. Tian, H.J. Ryu, Coal chemical-looping gasification of Ca-based oxygen carriers decorated by CaO, Powder Technol. 275(2015) 60-68. [11] Q.J. Guo, Y. Cheng, Y.Z. Liu, W.H. Jia, H.J. Ryu, Coal chemical looping gasification for syngas generation using an Iron-based oxygen carrier, Ind. Eng. Chem. Res. 53(1) (2014) 78-86. [12] M. Arjmand, A.M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, Evaluation of CuAl2O4 as an oxygen carrier in chemical-looping combustion, Ind. Eng. Chem. Res. 51(43) (2012) 13924-13934. [13] Z. Xia, W. Wang, G. Wang, Study of the crystal structure effect and mechanism during chemical looping gasification of coal, J. Energy Inst. 92(5) (2019) 1284-1293. [14] J. Yang, L.P. Ma, S.L. Dong, H.P. Liu, S.Q. Zhao, X.J. Cui, D.L. Zheng, J. Yang, Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation, Fuel 194(2017) 448-459. [15] M. Alonso, N. Rodriguez, B. Gonzalez, G. Grasa, R. Murillo, J.C. Abanades, Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development, Int. J. Greenh. Gas Control 4(2) (2010) 167-173. [16] Y.N. Wang, X. Tian, H.B. Zhao, K.L. Liu, The use of a low-cost oxygen carrier prepared from red mud and copper ore for in situ gasification chemical looping combustion of coal, Fuel Process. Technol. 205(2020) 106460. [17] M. An, J.J. Ma, W. Wu, T. Ren, X.D. Hu, Q.J. Guo, Chemical looping gasification of yangchang coalwith CuFe2O4 as oxygen carrier, Acta Petrol. Sin. 35(3) (2019) 561-568. [18] X.D. Hu, Studies into Ca-based compound oxygen carriers used in chemicallooping gasification of coal, Qingdao University of Science Technology, Qingdao, 2014. [19] R. Siriwardane, J. Poston, E. Monazam, E. Monazam, G. Richards, Production of hydrogen by steam oxidation of calcium ferrite reduced with various coals, Int. J. Hydrog. Energy 44(14) (2019) 7158-7167. [20] J.H. Wang, J. Du, L.P. Chang, K.C. Xie, Study on the structure and pyrolysis characteristics of Chinese western coals, Fuel Process. Technol. 91(4) (2010) 430-433. [21] C.Z. Li, K.D. Bartle, R. Kandiyoti, Vacuum pyrolysis of maceral concentrates in a wire-mesh reactor, Fuel 72(11) (1993) 1459-1468. [22] B. Strugnell, J.W. Patrick, Rapid hydropyrolysis studies on coal and maceral concentrates, Fuel 75(3) (1996) 300-306. [23] Y. Li, H. Wang, W.C. Li, Z.S. Li, N.S. Cai, CO2 Gasification of a lignite char in microfluidized bed thermogravimetric analysis for chemical looping combustion and chemical looping with oxygen uncoupling, Energy Fuels 33(1) (2019) 449-459. [24] B. Bhui, P. Vairakannu, Experimental and kinetic studies on in-situ CO2 gasification based chemical looping combustion of low ash coal using Fe2O3 as the oxygen carrier, J. CO2 Util. 29(2019) 103-116. [25] Y. De Vos, M. Jacobs, I. van Driessche, P. van der Voort, F. Snijkers, Processing and characterization of Fe-based oxygen carriers for chemical looping for hydrogen production, Int. J. Greenh. Gas Control 70(2018) 12-21. [26] J. Zhang, Thermodynamic Simulation and Experimental Study of Chemical Looping Gasification of Coal with Cooper Ferrite as Oxygen Carriers, Southeast University, Nanjing, 2019. [27] L.M. Lin, D.Y. Liu, J. Jin, Q. Cheng, W. Li, L. Feng, High iron and calcium coal ash as the oxygen carrier for chemical looping combustion, Ind. Eng. Chem. Res. 57(29) (2018) 9725-9736. [28] G.X. Deng, K.Z. Li, Z.H. Gu, X. Zhu, Y.G. Wei, X.M. Cheng, H. Wang, Synergy effects of combined red muds as oxygen carriers for chemical looping combustion of methane, Chem. Eng. J. 341(2018) 588-600. [29] L. Liu, Y. Cao, Q.C. Liu, J. Yang, Experimental and kinetic studies of coal-CO2 gasification in isothermal and pressurized conditions, RSC Adv. 7(4) (2017) 2193-2201. [30] L.Y. Chen, J.H. Bao, L. Kong, M. Combs, H.S. Nikolic, Z. Fan, K.L. Liu, The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion, Appl. Energy 184(2016) 9-18. [31] R.V. Siriwardane, E. Ksepko, H.J. Tian, J. Poston, T. Simonyi, M. Sciazko, Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal, Appl. Energy 107(2013) 111-123. [32] K. Wang, Q.B. Yu, Q. Qin, L.M. Hou, W.J. Duan, Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method, Int. J. Hydrog. Energy 41(24) (2016) 10346-10353. [33] C. Saha, S. Bhattacharya, Determination and comparison of CuO reduction/oxidation kinetics in CLC experiments with CO/air by the shrinking core model and its characterization, Energy Fuels 28(5) (2014) 3495-3510. [34] Z.Q. Wu, W.C. Yang, B.L. Yang, Thermal characteristics and surface morphology of char during co-pyrolysis of low-rank coal blended with microalgal biomass:effects of nannochloropsis and chlorella, Bioresour. Technol. 249(2018) 501-509. [35] Z.Q. Wu, S.Z. Wang, J. Zhao, L. Chen, H.Y. Meng, Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis, Energy Fuels 28(3) (2014) 1792-1801. [36] Z.Q. Wu, W.C. Yang, X.Y. Tian, B.L. Yang, Synergistic effects from co-pyrolysis of low-rank coal and model components of microalgae biomass, Energy Conv. Manag. 135(2017) 212-225. [37] X.K. Xu, R.M. Pan, R.Y. Chen, D.D. Zhang, Comparative pyrolysis characteristics and kinetics of typical hardwood in inert and oxygenous atmosphere, Appl. Biochem. Biotechnol. 190(1) (2020) 90-112. [38] F.Q. Guo, Y.P. Dong, Z.C. Lv, P.F. Fan, S. Yang, L. Dong, Pyrolysis kinetics of biomass (herb residue) under isothermal condition in a micro fluidized bed, Energy Conv. Manag. 93(2015) 367-376. [39] T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38(11) (1965) 1881-1886. [40] Z.Q. Wu, W.C. Yang, Y.W. Li, B. Zhang, B.L. Yang, On-line analysis on the interaction between organic compounds from co-pyrolysis of microalgae and low-rank coal:Thermal behavior and kinetic characteristics, Bioresour. Technol. 268(2018) 672-676. [41] H.J. Song, G.R. Liu, J.Z. Zhang, J.H. Wu, Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method, Fuel Process. Technol. 156(2017) 454-460. [42] N. Mao, Q. Wang, Y. Yang, D. Xu, W. Feng, J. Zhang, H. Bai, Q. Guo, Pyrolysis characteristics and kinetics analysis of qinghua coal, ningxia based on chemical bonding characteristics of macerals, CIESC J. 71(2) (2020) 811-820. (in Chinese) [43] H. Merdun, Z.B. Laougé, Kinetic and thermodynamic analyses during copyrolysis of greenhouse wastes and coal by TGA, Renew. Energy 163(2021) 453-464. [44] Y. Xu, Y.F. Zhang, Y. Wang, G.J. Zhang, L. Chen, Gas evolution characteristics of lignite during low-temperature pyrolysis, J. Anal. Appl. Pyrolysis 104(2013) 625-631. |
[1] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[2] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[3] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[7] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[8] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[9] | Jinchang Liu, Chenyang Shen, Lujie Huang, Tinghao Fang, Yaping Li, Dingcheng Liang, Qiang Xie. Preparation of pitch precursor with excellent spinnability for general-purpose carbon fibre using coal tar pitch as raw material [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 22-28. |
[10] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[11] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[12] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 409-420. |
[13] | Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5 [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 253-264. |
[14] | Kai Zhang, Fangming Xue, Zhiqiang Wang, Xingxing Cheng. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 202-210. |
[15] | Kangcheng Wang, Jie Zhang, Dexian Huang. Online temperature estimation of Shell coal gasification process based on extended Kalman filter [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 134-144. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 211
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||