Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 228-239.DOI: 10.1016/j.cjche.2020.10.006
• Biotechnology and Bioengineering • Previous Articles Next Articles
Banafsheh Azimi1, Elham Abdollahzadeh-Sharghi2, Babak Bonakdarpour1
Received:
2020-06-08
Revised:
2020-09-13
Online:
2021-12-27
Published:
2021-11-28
Contact:
Elham Abdollahzadeh-Sharghi, Babak Bonakdarpour
Supported by:
Banafsheh Azimi1, Elham Abdollahzadeh-Sharghi2, Babak Bonakdarpour1
通讯作者:
Elham Abdollahzadeh-Sharghi, Babak Bonakdarpour
基金资助:
Banafsheh Azimi, Elham Abdollahzadeh-Sharghi, Babak Bonakdarpour. Anaerobic-aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 228-239.
Banafsheh Azimi, Elham Abdollahzadeh-Sharghi, Babak Bonakdarpour. Anaerobic-aerobic processes for the treatment of textile dyeing wastewater containing three commercial reactive azo dyes: Effect of number of stages and bioreactor type[J]. 中国化学工程学报, 2021, 39(11): 228-239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.10.006
[1] A.A. Peláez-Cid, V. Romero-Hernández, A.M. Herrera-González, A. BautistaHernández, O. Coreño-Alonso, Synthesis of activated carbons from black sapote seeds, characterization and application in the elimination of heavy metals and textile dyes, Chin. J. Chem Eng. 28(2) (2019) 613-623. [2] A. Yurtsever, E. Sahinkaya, Ö. Aktaş, D. Uçar, Ö. Çınar, Z. Wang, Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater, Bioresour. Technol. 192(2015) 564-573. [3] F.I. Hai, K. Yamamoto, K. Fukushi, Hybrid treatment systems for dye wastewater, Crit. Rev. Environ. Sci. Technol. 37(2007) 315-377. [4] S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic-aerobic sequential biological treatment:A review, Int. J. Environ. Sci. Technol. 12(2015) 405-420. [5] N. Dafale, S. Wate, S. Meshram, N.R. Neti, Bioremediation of wastewater containing azo dyes through sequential anaerobic-aerobic bioreactor system and its biodiversity, Environ. Rev. 18(2010) 21-36. [6] C. Palma, A. Carvajal, C. Vásquez, E. Contreras, Wastewater treatment for removal of recalcitrant compounds:A hybrid process for decolorization and biodegradation of dyes, Chin. J. Chem. Eng. 19(2011) 621-625. [7] B. Bonakdarpour, I. Vyrides, D.C. Stuckey, Comparison of the performance of one stage and two stage sequential anaerobic-aerobic biological processes for the treatment of reactive-azo-dye-containing synthetic wastewaters, Int. Biodeterior. Biodegrad. 65(2011) 591-599. [8] I. Vyrides, B. Bonakdarpour, D.C. Stuckey, Salinity effects on biodegradation of Reactive Black 5 for one stage and two stages sequential anaerobic aerobic biological processes employing different anaerobic sludge, Int. Biodeterior. Biodegrad. 95(2014) 294-300. [9] M.A. Yun, K.M. Yeon, J.S. Park, C.H. Lee, J. Chun, D.J. Lim, Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment, Water Res. 40(2006) 45-52. [10] A. Yurtsever, B. Calimlioglu, M. Görür, Ö. Çınar, E. Sahinkaya, Effect of NaCl concentration on the performance of sequential anaerobic and aerobic membrane bioreactors treating textile wastewater, Chem. Eng. J. 287(2016) 456-465. [11] Z.S. Yan, S.H. Wang, X.K. Kang, Y. Ma, Enhanced removal of organics and phosphorus in a hybrid coagulation/membrane bioreactor (HCMBR) for real textile dyeing wastewater treatment, Desalin. Water Treat. 47(2012) 249-257. [12] A. Azizi, M.A. Moghaddam, R. Maknoon, E. Kowsari, Innovative combined technique for high concentration of azo dye AR18 wastewater treatment using modified SBR and enhanced Fenton process as post treatment, Process. Saf. Environ. Prot. 95(2015) 255-264. [13] Ö. Çınar, S. Yaşar, M. Kertmen, K. Demiröz, K.N.Ö. Yigit, M. Kitis, Effect of cycle time on biodegradation of azo dye in sequencing batch reactor, Process Saf. Environ. Prot. 86(2008) 455-460. [14] N. Manavi, A.S. Kazemi, B. Bonakdarpour, The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater, Chem. Eng. J. 312(2017) 375- 384. [15] D.T. Sponza, M. Işik, Decolorization and azo dye degradation by anaerobic/aerobic sequential process, Enzyme Microb. Technol. 31(2002) 102-110. [16] Y. Zhang, Y. Liu, Y. Jing, Z. Zhao, X. Quan, Steady performance of a zero valent iron packed anaerobic reactor for azo dye wastewater treatment under variable influent quality, J. Environ. Sci. 24(2012) 720-727. [17] V. Murali, S.A. Ong, L.N. Ho, Y.S. Wong, Evaluation of integrated anaerobic- aerobic biofilm reactor for degradation of azo dye methyl orange, Bioresour. Technol. 143(2013) 104-111. [18] N. Pasukphun, S. Vinitnantharat, Degradation of organic substances and reactive dye in an immobilized-cell sequencing batch reactor operation on simulated textile wastewater, J. Environ. Sci. Health. A Tox. Hazard. Subst Environ. Eng. 38(2003) 2019-2028. [19] Q.Q. Yang, Q. He, H.T. Ibrahim, Review on moving bed biofilm processes, Pakistan. J. Nutr. 11(2012) 706-713. [20] B. Rusten, B. Eikebrokk, Y. Ulgenes, E. Lygren, Design and operations of the Kaldnes moving bed biofilm reactors, Aquac. Eng. 34(2006) 322-331. [21] E. Hosseini Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18:Comparison of using two types of packing media, Bioresour. Technol. 127(2013) 415-421. [22] H.O. Park, S. Oh, R. Bade, W.S. Shin, Application of A2O moving-bed biofilm reactors for textile dyeing wastewater treatment, Korean J. Chem. Eng. 27(2010) 893-899. [23] D.H. Shin, W.S. Shin, Y.H. Kim, M.H. Han, S.J. Choi, Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment, Water Sci. Technol. 54(2006) 181-189. [24] V. Jegatheesan, B.K. Pramanik, J. Chen, D. Navaratna, C.Y. Chang, L. Shu, Treatment of textile wastewater with membrane bioreactor:A critical review, Bioresour. Technol. 204(2016) 202-212. [25] S. Grilli, D. Piscitelli, D. Mattioli, S. Casu, A. Spagni, Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration, J. Environ. Sci. Health. A Tox. Hazard. Subst Environ. Eng. 46(2011) 1512-1518. [26] D. de Jager, M.S. Sheldon, W. Edwards, Membrane bioreactor application within the treatment of high-strength textile effluent, Water Sci. Technol. 65(2012) 907-914. [27] S.J. You, J.Y. Teng, Performance and dye-degrading bacteria isolation of a hybrid membrane process, J. Hazard. Mater. 172(2009) 172-179. [28] S. Mohanty, N. Dafale, N.N. Rao, Microbial decolorization of Reactive Black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge, Biodegradation 17(2006) 403-413. [29] S. Mahbub, I. Shahriar, M. Iqfath, M.A. Hoque, M.A. Halimb, M.A. Khan, M.A. Rub, A.M. Asiri, Influence of alcohols/electrolytes on the interaction of reactive red dye with surfactant and removal of dye from solutions, J. Environ. Chem. Eng. 7(2019) 103364. [30] M.Z. Nawahwi, Z. Ibrahim, A. Yahya, Degradation of the azo dye Reactive Red 195 by Paenibacillus spp. R2, Nawahwi et al, J. Bioremed. Biodeg. 4(2013) 174. [31] N.D. Lourenço, J.M. Novais, H.M. Pinheiro, Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor, J. Biotechnol. 89(2001) 163-174. [32] Q. Hu, N. Zhou, E.R. Rene, D. Wu, D. Sun, B. Qiu, Stimulation of anaerobic biofilm development in the presence of low concentrations of toxic aromatic pollutants, Bioresour. Technol. 281(2019) 26-30. [33] E. Abdollahzadeh Sharghi, A. Shourgashti, B. Bonakdarpour, Considering a membrane bioreactor for the treatment of vegetable oil refinery wastewaters at industrially relevant organic loading rates, Bioproc. Biosyst. Eng. 43(2020) 981-995. [34] APHA (American Public Health Association), Standard methods for the examination of water and wastewater, 22th ed., Washington, DC, 2012. [35] B. Kokabian, B. Bonakdarpour, S. Fazel, The effect of salt on the performance and characteristics of a combined anaerobic-aerobic biological process for the treatment of synthetic wastewaters containing Reactive Black 5, Chem. Eng. J. 221(2013) 363-372. [36] H.M. Pinheiro, E. Touraud, O. Thomas, Aromatic amines from azo dye reduction:status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters, Dyes Pigm. 61(2004) 121-139. [37] O. Menezes, R. Brito, F. Hallwass, L. Florencio, M.T. Kato, S. Gavazza, Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors, Chem. Eng. Res. Des. 146(2019) 369-378. [38] E. Abdollahzadeh Sharghi, B. Bonakdarpour, P. Roustazade, M.A. Amoozegar, A. R. Rabbani, The biological treatment of high salinity synthetic oilfield produced water in a submerged membrane bioreactor using a halophilic bacterial consortium, J. Chem. Technol. Biotechnol. 88(2013) 2016-2026. [39] M. Plattes, E. Henry, P.M. Schosseler, A. Weidenhaupt, Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater, Biochem. Eng. J. 32(2006) 61-68. [40] P. Ghasemian, E. Abdollahzadeh Sharghi, L. Davarpanah, The influence of short values of hydraulic and sludge retention time on performance of a membrane bioreactor treating sunflower oil refinery wastewater, Int. J. Eng. 30(2017) 1417-1424. [41] J.A. Libra, M. Borchert, L. Vigelahn, T. Storm, Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites, Chemosphere 56(2004) 167-180. [42] N. Supaka, K. Juntongjin, S. Damronglerd, M.L. Delia, P. Strehaiano, Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system, Chem. Eng. J. 99(2004) 169-176. [43] A.D.N. Ferraz Jr., M.T. Kato, L. Florencio, S. Gavazza, Textile effluent treatment in a UASB reactor followed by submerged aerated biofiltration, Water Sci. Technol. 64(2011) 1581-1589. [44] R. Shoukat, S.J. Khan, Y. Jamal, Hybrid anaerobic-aerobic biological treatment for real textile wastewater, J. Water Process Eng. 29(2019) 100804. [45] F. Abiri, N. Fallah, B. Bonakdarpour, Sequential anaerobic-aerobic biological treatment of colored wastewaters:Case study of a textile dyeing factory wastewater, Water Sci. Technol. 75(2017) 1261-1269. [46] F.P. Van der Zee, S. Villaverde, Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies, Water Res. 39(2005) 1425-1440. [47] I.K. Kapdan, R. Oztekin, The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobicaerobic SBR system, J. Hazard. Mater. 136(2006) 896-901. [48] B. Mahendran, L. Lishman, S.N. Liss, Structural, physicochemical and microbial properties of flocs and biofilms in integrated fixed-film activated sludge (IFFAS) systems, Water. Res. 46(2012) 5085-5101. [49] Y. García-Martínez, C. Bengoa, F. Stüber, A. Fortuny, J. Font, A. Fabregat, Biodegradation of Aid Orange 7 in an anaerobic-aerobic sequential treatment system, Chem. Eng. Process. 94(2015) 99-104. [50] X. Zhang, P.L. Bishop, Biodegradability of biofilm extracellular polymeric substances, Chemosphere 50(2003) 63-69. [51] B.E.L. Baeta, D.R.S. Lima, S.Q. Silva, S.F. Aquino, Evaluation of soluble microbial products and aromatic amines accumulation during a combined anaerobic/aerobic treatment of a model azo dye, Chem. Eng. J. 259(2015) 936-944. [52] S.F. Aquino, D.C. Stuckey, Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds, Water Res. 2004(38) (2004) 255-266. [53] B.Y. Chen, Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola:Toxicity and kinetics, Process. Biochem. 38(2002) 437- 446. [54] N. Yemashova, S. Kalyuzhny, Microbial conversion of selected azo dyes and their breakdown products, Water Sci. Technol. 53(2006) (2006) 163-171. [55] M. Jonstrup, N. Kumar, M. Murto, B. Mattiasson, Sequential anaerobic-aerobic treatment of azo dyes:Decolourisation and amine degradability, Desalination 280(2011) 339-346. [56] E.J. Weber, D.L. Spidle, K.A. Thorn, Covalent binding of aniline to humic substances. 1. Kinetic studies, Environ. Sci. Technol. 30(1996) 2755-2763. [57] K.A. Thorn, P.J. Pettigrew, W.S. Goldenberg, E.J. Weber, Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions, Environ. Sci. Technol. 30(1996) 2764-2775. [58] A. Gulkowska, M. Krauss, D. Rentsch, J. Hollender, Reactions of a sulfonamide antimicrobial with model humic constituents:Assessing pathways and stability of covalent bonding, Environ. Sci. Technol. 46(2012) 2102-2111. [59] M. Işık, D.T. Sponza, Monitoring of toxicity and intermediates of CI Direct Black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system, J. Hazard. Mater. 114(2004) 29-39. [60] F.P. van der Zee, R.H. Bouwman, D.P. Strik, G. Lettinga, J.A. Field, Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors, Biotechnol. Bioeng. 75(2001) 691-701. [61] S.Y. Kim, J.Y. An, B.W. Kim, The effects of reductant and carbon source on the microbial decolorization of azo dyes in an anaerobic sludge process, Dye Pigment 76(2008) 256-263. [62] A.J.D. Silva, J.S. Hirasawa, M.B. Varesche, E. Foresti, M. Zaiat, Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea, Anaerobe. 12(2006) 93-98. |
[1] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[2] | Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 89-102. |
[3] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[4] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[5] | Shichao Tian, Yuming Tu, Rujie Li, Yufan Du, Zhiyong Zhou, Fan Zhang, Zhongqi Ren. Comprehensive treatment of latex wastewater and resource utilization of concentrated liquid [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 183-192. |
[6] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[7] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[8] | Zhongwei Tan, Xingguo Xu, Yu Wan, Chengjun Kang, Zhaoqiang Zhang, Zhenxia Zhao, Fang Shen, Kungang Chai, Hongbing Ji. Efficient recovery of aromatic compounds from the wastewater of styrene monomer and propylene oxide co-production plant via hypercrosslinked aryl-rich starch-β-cyclodextrin polymeric sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 150-160. |
[9] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[10] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[11] | Fangyou Yan, Wei Li, Jinli Zhang. Simultaneous synthesis of heat-integrated water networks by a nonlinear program: Considering the wastewater regeneration reuse [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 402-411. |
[12] | Chen Zhao, Yahan Ye, Xianfu Chen, Xiaowei Da, Minghui Qiu, Yiqun Fan. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 267-277. |
[13] | Cemile Şeyma Arzum Yapıcı, Dilan Toprak, Müjgan Yıldız, Sinan Uyanık, Yakup Karaaslan, Deniz Uçar. A combo technology of autotrophic and heterotrophic denitrification processes for groundwater treatment [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 121-127. |
[14] | Shaimaa T. Kadhum, Ghayda Yassen Alkindi, Talib M. Albayati. Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 19-28. |
[15] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||