Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 219-227.DOI: 10.1016/j.cjche.2021.06.023
• Biotechnology and Bioengineering • Previous Articles Next Articles
Dong Wan1, Sunfan Li1, Jianxin Zhang1, Guilei Ma2, Jie Pan1
Received:
2021-01-20
Revised:
2021-06-13
Online:
2021-12-27
Published:
2021-11-28
Contact:
Guilei Ma, Jie Pan
Supported by:
Dong Wan1, Sunfan Li1, Jianxin Zhang1, Guilei Ma2, Jie Pan1
通讯作者:
Guilei Ma, Jie Pan
基金资助:
Dong Wan, Sunfan Li, Jianxin Zhang, Guilei Ma, Jie Pan. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 219-227.
Dong Wan, Sunfan Li, Jianxin Zhang, Guilei Ma, Jie Pan. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy[J]. 中国化学工程学报, 2021, 39(11): 219-227.
[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2020, CA:A Cancer J. Clin. 70(1) (2020) 7-30. [2] S. Sindhwani, A.M. Syed, J. Ngai, B.R. Kingston, L. Maiorino, J. Rothschild, P. MacMillan, Y.W. Zhang, N.U. Rajesh, T. Hoang, J.L.Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L.S. Wang, M. Egeblad, W.C.W. Chan, The entry of nanoparticles into solid tumours, Nat. Mater. 19(5) (2020) 566- 575. [3] K.Q. Xu, Y. Cheng, J. Yan, Y.L. Feng, R.X. Zheng, X.Q. Wu, Y.J. Wang, P.P. Song, H. Y. Zhang, Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy, Nano Res. 12(12) (2019) 2947-2953. [4] M. Cagel, E. Grotz, E. Bernabeu, M.A. Moretton, D.A. Chiappetta, Doxorubicin:nanotechnological overviews from bench to bedside, Drug Discov. Today 22(2) (2017) 270-281. [5] J. Liu, Y.Z. Hu, H. Huang, Research progress of nanobodies in diagnosis and therapy of tumor, Chem. Ind. Eng. 30(4) (2013), 29-35, 54. [6] I. Ekladious, Y.L. Colson, M.W. Grinstaff, Polymer-drug conjugate therapeutics:advances, insights and prospects, Nat. Rev. Drug Discov. 18(4) (2019) 273-294. [7] F. Seidi, R. Jenjob, D. Crespy, Designing smart polymer conjugates for controlled release of payloads, Chem. Rev. 118(7) (2018) 3965-4036. [8] X. Zhang, X. Li, Q. You, X. Zhang, Prodrug strategy for cancer cell-specific targeting:A recent overview, Eur. J. Med. Chem. 139(2017) 542-563. [9] R. Walther, J. Rautio, A.N. Zelikin, Prodrugs in medicinal chemistry and enzyme prodrug therapies, Adv. Drug Deliv. Rev. 118(2017) 65-77. [10] A.G. Cheetham, R.W. Chakroun, W. Ma, H.G. Cui, Self-assembling prodrugs, Chem. Soc. Rev. 46(21) (2017) 6638-6663. [11] Q. Pei, X.L. Hu, X.H. Zheng, R. Xia, S. Liu, Z.G. Xie, X.B. Jing, Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneitytriggered drug release for synergistic photothermal/chemotherapy, Nano Res. 12(4) (2019) 877-887. [12] W. Amly, R. Karaman, Recent updates in utilizing prodrugs in drug delivery (2013-2015), Expert Opin. Drug Deliv. 13(4) (2016) 571-591. [13] H.B. Chen, Z.J. Gu, H.W. An, C.Y. Chen, J. Chen, R. Cui, S.Q. Chen, W.H. Chen, X.S. Chen, X.Y. Chen, Z. Chen, B.Q. Ding, Q. Dong, Q. Fan, T. Fu, D.Y. Hou, Q. Jiang, H. T. Ke, X.Q. Jiang, G. Liu, S.P. Li, T. Li, Z. Liu, G.J. Nie, M. Ovais, D.W. Pang, N.S. Qiu, Y.Q. Shen, H.Y. Tian, C. Wang, H. Wang, Z.Q. Wang, H.P. Xu, J.F. Xu, X.L. Yang, S. Zhu, X.C. Zheng, X.Z. Zhang, Y.B. Zhao, W.H. Tan, X. Zhang, Y.L. Zhao, Precise nanomedicine for intelligent therapy of cancer, Sci. China Chem. 61(12) (2018) 1503-1552. [14] Y. Wang, S. Sun, Z. Zhang, D. Shi, Nanomaterials for cancer precision medicine, Adv. Mater. 30(17) (2018) e1705660. [15] J. Gao, X.Y. Lian, Z.P. Wei, B. Wang, H.Q. Li, X.W. Ren, Application of nanotechnology in the development of pharmaceutical preparations, Chem. Ind. Eng. 29(5) (2012) 64-69. [16] S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, F. Schlenk, D. Fischer, K. Kiouptsi, C. Reinhardt, K. Landfester, H. Schild, M. Maskos, S.K. Knauer, R.H. Stauber, Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol. 8(10) (2013) 772-781. [17] Z.Q. Shi, Q.Q. Li, L. Mei, pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy, Chin. Chem. Lett. 31(6) (2020) 1345-1356. [18] C. Yang, T. Wu, Y. Qi, Z. Zhang, Recent advances in the application of vitamin E TPGS for drug delivery, Theranostics 8(2) (2018) 464-485. [19] W. Cheng, C.Y. Liang, L. Xu, G. Liu, N.S. Gao, W. Tao, L.Y. Luo, Y.X. Zuo, X.S. Wang, X.D. Zhang, X.W. Zeng, L. Mei, TPGS-functionalized polydopaminemodified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance, Small 13(29) (2017) e1700623. [20] D. Zhu, W. Tao, H. Zhang, G. Liu, T. Wang, L. Zhang, X. Zeng, L. Mei, Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer, Acta Biomater. 30(2016) 144-154. [21] X.W. Zeng, W. Tao, L. Mei, L.Q. Huang, C.Y. Tan, S.S. Feng, Cholic acidfunctionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer, Biomaterials 34(25) (2013) 6058-6067. [22] D. Pozzi, V. Colapicchioni, G. Caracciolo, S. Piovesana, A.L. Capriotti, S. Palchetti, S. De Grossi, A. Riccioli, H. Amenitsch, A. Laganà, Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids:From nanostructure to uptake in cancer cells, Nanoscale 6(5) (2014) 2782-2792. [23] W. Cheng, X. Zeng, H. Chen, Z. Li, W. Zeng, L. Mei, Y. Zhao, Versatile polydopamine platforms:synthesis and promising applications for surface modification and advanced nanomedicine, ACS Nano 13(8) (2019) 8537-8565. [24] B.W. Yang, Y. Chen, J.L. Shi, Reactive oxygen species (ROS)-based nanomedicine, Chem. Rev. 119(8) (2019) 4881-4985. [25] Z. Guo, J. Sui, M. Ma, J. Hu, Y. Sun, L. Yang, Y. Fan, X. Zhang, pH-Responsive charge switchable PEGylated e-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment, J. Control. Release 326(2020) 350-364. [26] Q. Jin, Y.Y. Deng, X.H. Chen, J. Ji, Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake, ACS Nano 13(2) (2019) 954-977. [27] H.S. El-Sawy, A.M. Al-Abd, T.A. Ahmed, K.M. El-Say, V.P. Torchilin, Stimuliresponsive nano-architecture drug-delivery systems to solid tumor micromilieu:Past, present, and future perspectives, ACS Nano 12(11) (2018) 10636-10664. [28] R.Q. Yan, Y.X. Hu, F. Liu, S.X. Wei, D.Q. Fang, A.J. Shuhendler, H. Liu, H.Y. Chen, D.J. Ye, Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorogenic reaction and self-assembly, J. Am. Chem. Soc. 141(26) (2019) 10331-10341. [29] S. He, S. Zhong, L. Xu, Y. Dou, Z. Li, F. Qiao, Y. Gao, X. Cui, Sonochemical fabrication of magnetic reduction-responsive alginate-based microcapsules for drug delivery, Int. J. Biol. Macromol. 155(2020) 42-49. [30] K. Kessenbrock, V. Plaks, Z. Werb, Matrix metalloproteinases:Regulators of the tumor microenvironment, Cell 141(1) (2010) 52-67. [31] A.C. Braun, M. Gutmann, R. Ebert, F. Jakob, H. Gieseler, T. Lühmann, L. Meinel, Matrix metalloproteinase responsive delivery of myostatin inhibitors, Pharm. Res. 34(1) (2017) 58-72. [32] Y. Chen, M.F. Su, Y.Q. Li, J.B. Gao, C. Zhang, Z. Cao, J.B. Zhou, J. Liu, Z.Z. Jiang, Enzymatic PEG-poly(amine-co-disulfide ester) nanoparticles as pH- and redox-responsive drug nanocarriers for efficient antitumor treatment, ACS Appl. Mater. Interfaces 9(36) (2017) 30519-30535. [33] M. Han, M.Y. Huang-Fu, W.W. Guo, N.N. Guo, J.J. Chen, H.N. Liu, Z.Q. Xie, M.T. Lin, Q.C. Wei, J.Q. Gao, MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor, ACS Appl. Mater. Interfaces 9(49) (2017) 42459-42470. [34] W. Ke, Z. Zha, J.F. Mukerabigwi, W. Chen, Y. Wang, C. He, Z. Ge, Matrix metalloproteinase-responsive multifunctional peptide-linked amphiphilic block copolymers for intelligent systemic anticancer drug delivery, Bioconjug. Chem. 28(8) (2017) 2190-2198. [35] Y. Lv, C.R. Xu, X.M. Zhao, C.S. Lin, X. Yang, X.F. Xin, L. Zhang, C. Qin, X.P. Han, L. Yang, W. He, L.F. Yin, Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells, ACS Nano 12(2) (2018) 1519-1536. [36] Q. Yao, L.F. Kou, Y. Tu, L. Zhu, MMP-responsive 'smart' drug delivery and tumor targeting, Trends Pharmacol. Sci. 39(8) (2018) 766-781. [37] J. Pan, P.J. Li, Y. Wang, L. Chang, D. Wan, H. Wang, Active targeted drug delivery of MMP-2 sensitive polymeric nanoparticles, Chem. Commun. (Camb.) 54(79) (2018) 11092-11095. [38] L.L. Li, Q. Zeng, W.J. Liu, X.F. Hu, Y.S. Li, J. Pan, D. Wan, H. Wang, Quantitative analysis of caspase-1 activity in living cells through dynamic equilibrium of chlorophyll-based nano-assembly modulated photoacoustic signals, ACS Appl. Mater. Interfaces 8(28) (2016) 17936-17943. [39] X.M. Zhu, A. Tsend-Ayush, Z.Y. Yuan, J. Wen, J.X. Cai, S.F. Luo, J.X. Yao, J.X. Bian, L.F. Yin, J.P. Zhou, J. Yao, Glycyrrhetinic acid-modified TPGS polymeric micelles for hepatocellular carcinoma-targeted therapy, Int. J. Pharm. 529(1-2) (2017) 451-464. [40] J. Pan, D. Wan, Y.X. Bian, H.F. Sun, C. Zhang, F.M. Jin, Z.Q. Huang, J.L. Gong, Fluorescent hydroxyapatite-loaded biodegradable polymer nanoparticles with folate decoration for targeted imaging, AIChE J. 59(12) (2013) 4494- 4501. [41] C. Cui, Y.N. Xue, M. Wu, Y. Zhang, P. Yu, L. Liu, R.X. Zhuo, S.W. Huang, Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles, Biomaterials 34(15) (2013) 3858-3869. [42] N. Zhou, Z. Zhi, D.M. Liu, D.Q. Wang, Y.P. Shao, K. Yan, L.J. Meng, D.M. Yu, Acidresponsive and biologically degradable polyphosphazene nanodrugs for efficient drug delivery, ACS Biomater. Sci. Eng. 6(7) (2020) 4285-4293. [43] P. Chmielarz, M. Fantin, S. Park, A.A. Isse, A. Gennaro, A.J.D. Magenau, A. Sobkowiak, K. Matyjaszewski, Electrochemically mediated atom transfer radical polymerization (eATRP), Prog. Polym. Sci. 69(2017) 47-78. [44] T.F. Yang, C.N. Chen, M.C. Chen, C.H. Lai, H.F. Liang, H.W. Sung, Shellcrosslinked Pluronic L121 micelles as a drug delivery vehicle, Biomaterials 28(4) (2007) 725-734. [45] Y. Guo, M. Chu, S. Tan, S. Zhao, H. Liu, B.O. Otieno, X. Yang, C. Xu, Z. Zhang, Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance, Mol. Pharm. 11(1) (2014) 59-70. [46] J. Lu, Y. Huang, W. Zhao, Y. Chen, J. Li, X. Gao, R. Venkataramanan, S. Li, Design and characterization of PEG-derivatized vitamin E as a nanomicellar formulation for delivery of paclitaxel, Mol. Pharm. 10(8) (2013) 2880-2890. [47] J.Y. Liu, Y. Pang, W. Huang, Z.Y. Zhu, X.Y. Zhu, Y.F. Zhou, D.Y. Yan, Redoxresponsive polyphosphate nanosized assemblies:A smart drug delivery platform for cancer therapy, Biomacromolecules 12(6) (2011) 2407-2415. [48] V.P. Torchilin, Targeted polymeric micelles for delivery of poorly soluble drugs, Cell. Mol. Life Sci. 61(19-20) (2004) 2549-2559. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 40-52. |
[3] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[4] | Suhang Xun, Cancan Wu, Lida Tang, Mengmeng Yuan, Haofeng Chen, Minqiang He, Wenshuai Zhu, Huaming Li. One-pot in-situ synthesis of coralloid supported VO2 catalyst for intensified aerobic oxidative desulfurization [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 136-140. |
[5] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[6] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[7] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[8] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[9] | Luyao Guo, Mengru Wang, Ronghe Lin, Jiaxin Ma, Shuanghao Zheng, Xiaoling Mou, Jun Zhang, Zhong-Shuai Wu, Yunjie Ding. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 280-288. |
[10] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 34-45. |
[11] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[12] | Wei Liu, Xueting Sun, Xiaoyan Dong, Yan Sun. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 227-235. |
[13] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[14] | Xiaobo Ruan, Sheng Zhang, Wei Song, Jia Liu, Xiulai Chen, Liming Liu, Jing Wu. Efficient synthesis of tyrosol from L-tyrosine via heterologous Ehrlich pathway in Escherichia coli [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 18-30. |
[15] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 203
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||