Chinese Journal of Chemical Engineering ›› 2021, Vol. 40 ›› Issue (12): 124-130.DOI: 10.1016/j.cjche.2020.12.019
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Bo-Yun Liu1, Min-Jie Chen2, Liang Yang1,2, Bo Zhao1,2, Tao Xia2, Gang-Gang Chang2
Received:
2020-07-14
Revised:
2020-11-22
Online:
2022-01-14
Published:
2021-12-28
Contact:
Bo Zhao,E-mail:1031162667@qq.com;Gang-Gang Chang,E-mail:changgang2016@whut.edu.cn
Supported by:
Bo-Yun Liu1, Min-Jie Chen2, Liang Yang1,2, Bo Zhao1,2, Tao Xia2, Gang-Gang Chang2
通讯作者:
Bo Zhao,E-mail:1031162667@qq.com;Gang-Gang Chang,E-mail:changgang2016@whut.edu.cn
基金资助:
Bo-Yun Liu, Min-Jie Chen, Liang Yang, Bo Zhao, Tao Xia, Gang-Gang Chang. Hollow MOF capsule encapsulated amino-functionalized ionic liquid for excellent CO2 catalytic conversion[J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 124-130.
Bo-Yun Liu, Min-Jie Chen, Liang Yang, Bo Zhao, Tao Xia, Gang-Gang Chang. Hollow MOF capsule encapsulated amino-functionalized ionic liquid for excellent CO2 catalytic conversion[J]. 中国化学工程学报, 2021, 40(12): 124-130.
[1] Q. Wang, J. Luo, Z. Zhong and A. Borgna, CO2 Capture by Solid-Adsorbents and Their Applications: Current Status and New Trends, Energy Environ. Sci., 4 (2011) 42-55 [2] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas and C. W. Jones, Direct Capture of CO2 from Ambient Air, Chem. Rev., 116 (2016) 11840-11876 [3] Z. Zhang, Z.-Z. Yao, S. Xiang and B. Chen, Perspective of microporous metal-organic frameworks for CO2 capture and separation, Energy Environ. Sci., 7 (2014) 2868-2899 [4] M. He, Y. Sun and B. Han, Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling, Angew. Chem., Int. Ed., 52 (2013) 9620-9633 [5] S. Chu, Carbon Capture and Sequestration, Science, 325 (2009) 1599 [6] J. W. Maina, C. Pozo-Gonzalo, L. Kong, J. Schütz, M. Hill and L. F. Dumée, Metal organic framework based catalysts for CO2 conversion, Mater. Horiz., 4 (2017) 345-361 [7] H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States, J. Am. Chem. Soc., 137 (2015) 13440-13443 [8] H. He, J. A. Perman, G. Zhu and S. Ma, Metal-Organic Frameworks for CO2 Chemical Transformations, Small, 12 (2016) 6309-6324 [9] H. J. Herzog, Scaling up carbon dioxide capture and storage: From megatons to gigatons, Energy Econ., 33 (2011) 597-604 [10] F. M. Orr Jr, CO2 capture and storage: are we ready? Energy Environ. Sci., 2 (2009) 449-458 [11] B. Mousavi, S. Chaemchuen, B. Moosavi, Z. Luo, N. Gholampour and F. Verpoort, Bioconjugatable, PEGylated hydroporphyrins for photochemistry and photomedicine. Narrow-band, red-emitting chlorins, New J. Chem., 40 (2016) 5170-5176 [12] Z. R. Jiang, H. Wang, Y. Hu, J. Lu and H. L. Jiang, Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion, ChemSusChem, 8 (2015) 878-885 [13] X. Wang, W.-Y. Gao, Z. Niu, L. Wojtas, J. A. Perman, Y.-S. Chen, Z. Li, B. Aguila and S. Ma, A Metal-Metalloporphyrin Framework based on an Octatopic Porphyrin Ligand for Chemical Fixation of CO2 with Aziridines, Chem. Commun., 54 (2018) 1170-1173 [14] L.-B. Sun, A.-G. Li, X.-D. Liu, X.-Q. Liu, D. Feng, W. Lu, D. Yuan and H.-C. Zhou, Facile fabrication of cost-effective porous polymer networks for highly selective CO2 capture, J. Mater. Chem. A, 3 (2015) 3252-3256 [15] M. Ding, R. W. Flaig, H.-L. Jiang and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials, Chem. Soc. Rev., 48 (2019) 2783-2828 [16] B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider and J. F. Brennecke, Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids, J. Am. Chem. Soc., 132 (2010) 2116-2117 [17] E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, CO2 capture by a Task-Specific Ionic Liquid, J. Am. Chem. Soc., 124 (2002) 926-927 [18] I. Niedermaier, M. Bahlmann, C. Papp, C. Kolbeck, W. Wei, S. Krick Calderón, M. Grabau, P. S. Schulz, P. Wasserscheid and H.-P. Steinrück, Carbon Dioxide Capture by an Amine Functionalized Ionic Liquid: Fundamental Differences of Surface and Bulk Behavior, J. Am. Chem. Soc., 136 (2013) 436-441 [19] L. G. Sánchez, G. Meindersma and A. De Haan, Kinetics of absorption of CO2 in amino-functionalized ionic liquids, Chem. Eng. J., 166 (2011) 1104-1115 [20] K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida and K. Kaneda, Mg/Al Mixed Oxides as Highly Active Acid? Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides, J. Am. Chem. Soc., 121 (1999) 4526-4527 [21] R. L. Paddock and S. T. Nguyen, Chemical CO2 Fixation: Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides, J. Am. Chem. Soc., 123 (2001) 11498-11499 [22] L. Zhang, Z.-J. Zhao, T. Wang and J. Gong, Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide, Chem. Soc. Rev., 47 (2018) 5423-5443 [23] C. Yoo, Y.-E. Kim and Y. Lee, Selective Transformation of CO2 to CO at a Single Nickel Center, Acc. Chem. Res., 51 (2018) 1144-1152 [24] D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang and C. P. Berlinguette, Electrolytic CO2 Reduction in a Flow Cell, Acc. Chem. Res., 51 (2018) 910-918 [25] D. Voiry, H. S. Shin, K. P. Loh and M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction, Nat. Rev. Chem., 2 (2018) 0105 [26] L. Han, S.-W. Park and D.-W. Park, Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate, Energy Environ. Sci., 2 (2009) 1286-1292 [27] X. Zheng, S. Luo, L. Zhang and J.-P. Cheng, Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions, Green Chem, 11 (2009), 455-458 [28] Y. Xie, Z. Zhang, T. Jiang, J. He, B. Han, T. Wu and K. Ding, CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross‐Linked Polymer Matrix, Angew. Chem., Int. Ed., 46 (2007) 7255-7258 [29] X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang, Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s, Chem. Sci., 6 (2015) 6916-6924 [30] Z. Niu, W. D. B. Gunatilleke, Q. Sun, P. C. Lan, J. Perman, J.-G. Ma, Y. Cheng, B. Aguila and S. Ma, Metal-organic framework anchored with a Lewis pair as a new paradigm for catalysis, Chem, 4 (2018) 2587-2599 [31] H. She, X. Ma and G. Chang, Highly efficient and selective removal of N-heterocyclic aromatic contaminants from liquid fuels in a Ag(I) functionalized metal-organic framework: Contribution of multiple interaction sites, J. Colloid Interface Sci., 518 (2018) 149-155 [32] S. Wang and X. Wang, Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction, Angew. Chem., Int. Ed., 55 (2016) 2308–2320 [33] G. G. Chang, X. C. Ma, Y. X. Zhang, L. Y. Wang, G. Tian, J. W. Liu, J. Wu, Z. Y. Hu, X. Y. Yang and B. Chen, Construction of Hierarchical Metal–Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO2 Conversion, Adv. Mater., 31 (2019) 1904969 [34] Y. Liu, X.-C. Ma, G.-G. Chang, S.-C. Ke, T. Xia, Z.-Y. Hu and X.-Y. Yang, Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal–organic frameworks toward one-pot tandem reactions, J. Colloid Interface Sci., 557 (2019) 207-215 [35] A. Schoedel, Z. Ji and O. M. Yaghi, The role of metal–organic frameworks in a carbon-neutral energy cycle, Nat. Energy, 1 (2016) 16034 [36] G. Cui, J. Wang and S. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev., 45 (2016) 4307–4339 [37] J. Yang, F. J. Zhang, H. Y. Lu, X. Hong, H. L. Jiang, Y. Wu and Y. D. Li, Hollow Zn/Co ZIF particles derived from core–shell ZIF‐67@ ZIF‐8 as selective catalyst for the semi‐hydrogenation of acetylene, Angew. Chem., Int. Ed., 54 (2015) 10889-10893 [38] H. Chen, K. Shen, Y. Tan and Y. Li, Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties, ACS Nano, 13 (2019) 7800-7810 [39] H. Chen, K. Shen, Q. Mao, J. Chen and Y. Li, Nanoreactor of MOF-derived yolk–shell Co@C–N: Precisely controllable structure and enhanced catalytic activity, ACS Catal, 8 (2018) 1417-1426 [40] B. Mousavi, S. Chaemchuen, B. Moosavi, Z. Luo, N. Gholampour and F. Verpoort, Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates, New J. Chem., 40 (2016) 5170-5176 [41] X. Song, D. Hu, X. Yang, H. Zhang, W. Zhang, J. Li, M. Jia and J. Yu, Polyoxomolybdic cobalt encapsulated within Zr-based metal–organic frameworks as efficient heterogeneous catalysts for olefins epoxidation, ACS Sustain Chem Eng., 7 (2019) 3624-3631 [42] E. E. Macias, P. Ratnasamy and M. A. Carreon, Catalytic activity of metal organic framework Cu3(BTC)2 in the cycloaddition of CO2 to epichlorohydrin reaction, Catal. Today, 198 (2012) 215– 218 [43] R. R. Kuruppathparambil, T. Jose, R. Babu, G.-Y. Hwang, A. C. Kathalikkattil, D.-W. Kim and D.-W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B, 1852 (2016) 562-569 [44] N. Wei, Y. Zhang, L. Liu, Z.-B. Han and D.-Q. Yuan, Pentanuclear Yb(III) cluster-based metal-organic frameworks as heterogeneous catalysts for CO2 conversion, Appl. Catal. B, 219 (2017) 6 [45] S. R. Leandro, A. C. Mourato, U. Łapińska, O. C. Monteiro, C. I. Fernandes, P. D. Vaz and C. D. Nunes, Efficient hydrodesulfurization catalysts derived from Strandberg P-Mo-Ni polyoxometalates, J. Catal., 358 (2018) 187-198 [46] W.-Y. Gao, L. Wojtas and S. Ma, A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions, Chem. Commun., 50 (2014) 5316-5318 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[5] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[6] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[7] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[8] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[9] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[10] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[11] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[12] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[13] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[14] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[15] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||