Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 392-402.DOI: 10.1016/j.cjche.2021.09.015
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Zhentao Chen, Yaxin Liu, Jian Chen, Yang Zhao, Tao Jiang, Fangyu Zhao, Jiahuan Yu, Haoxuan Yang, Fan Yang, Chunming Xu
Received:
2021-06-30
Revised:
2021-08-16
Online:
2022-02-25
Published:
2022-01-28
Contact:
Zhentao Chen,E-mail address:czt@cup.edu.cn;Chunming Xu,E-mail address:xcm@cup.edu.cn
Supported by:
Zhentao Chen, Yaxin Liu, Jian Chen, Yang Zhao, Tao Jiang, Fangyu Zhao, Jiahuan Yu, Haoxuan Yang, Fan Yang, Chunming Xu
通讯作者:
Zhentao Chen,E-mail address:czt@cup.edu.cn;Chunming Xu,E-mail address:xcm@cup.edu.cn
基金资助:
Zhentao Chen, Yaxin Liu, Jian Chen, Yang Zhao, Tao Jiang, Fangyu Zhao, Jiahuan Yu, Haoxuan Yang, Fan Yang, Chunming Xu. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 392-402.
Zhentao Chen, Yaxin Liu, Jian Chen, Yang Zhao, Tao Jiang, Fangyu Zhao, Jiahuan Yu, Haoxuan Yang, Fan Yang, Chunming Xu. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process[J]. 中国化学工程学报, 2022, 41(1): 392-402.
[1] E.J.M. Hensen, P.J. Kooyman, Y. van der Meer, A.M. van der Kraan, V.H.J. de Beer, J.A.R. van Veen, R.A. van Santen, The relation between morphology and hydrotreating activity for supported MoS2 particles, J. Catal. 199(2) (2001) 224–235. [2] S. Yoshinaka, K. Segawa, Hydrodesulfurization of dibenzothiophenes over molybdenum catalyst supported on TiO2-Al2O3, Catal. Today 45(1–4) (1998) 293–298. [3] Y.V. Joshi, P. Ghosh, M. Daage, W.N. Delgass, Support effects in HDS catalysts: DFT analysis of thiolysis and hydrolysis energies of metal-support linkages, J. Catal. 257(1) (2008) 71–80. [4] K. Segawa, S. Satoh, TiO2-coated on Al2O3 support prepared by CVD method for HDS catalysts, Stud. Surf. Sci. Catal. 127(1999) 129–136. [5] P.A. Nikulshin, N.N. Tomina, A.A. Pimerzin, A.V. Kucherov, V.M. Kogan, Investigation into the effect of the intermediate carbon carrier on the catalytic activity of the HDS catalysts prepared using heteropolycompounds, Catal. Today 149(1–2) (2010) 82–90. [6] S.A. Al-Hammadi, A.M. Al-Amer, T.A. Saleh, Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions, Chem. Eng. J. 345(2018) 242–251. [7] F. Liu, S.P. Xu, Y.W. Chi, D.F. Xue, A novel alumina-activated carbon composite supported NiMo catalyst for hydrodesulfurization of dibenzothiophene, Catal. Commun. 12(6) (2011) 521–524. [8] F. Cui, G.C. Li, X.B. Li, M.H. Lu, M.S. Li, Enhancement of hydrodesulfurization of 4, 6-dimethyldibenzothiophene catalyzed by CoMo catalysts supported on carbon-covered c-Al2O3, Catal. Sci. Technol. 5(1) (2015) 549–555. [9] H. Farag, D.D. Whitehurst, K. Sakanishi, I. Mochida, Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenzothiophenes and diesel fuel, Catal. Today 50(1) (1999) 9–17. [10] T.N. Aridi, M.A. Al-Daous, HDS of 4, 6-dimethyldibenzothiophene over MoS2 catalysts supported on macroporous carbon coated with aluminosilicate nanoparticles, Appl. Catal. A: Gen. 359(1–2) (2009) 180–187. [11] B.M. Reddy, B. Chowdhury, P.G. Smirniotis, An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides, Appl. Catal. A: Gen. 211(1) (2001) 19–30. [12] J.L. Brito, A.L. Barbosa, Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II), J. Catal. 171(2) (1997) 467–475. [13] M.O. Kazakov, M.A. Kazakova, Y.V. Vatutina, T.V. Larina, Y.A. Chesalov, E.Y. Gerasimov, I.P. Prosvirin, O.V. Klimov, A.S. Noskov, Comparative study of MWCNT and alumina supported CoMo hydrotreating catalysts prepared with citric acid as chelating agent, Catal. Today 357(2020) 221–230. [14] Z. Hajjar, M. Kazemeini, A. Rashidi, S. Soltanali, F. Bahadoran, Naphtha HDS over Co-Mo/Graphene catalyst synthesized through the spray pyrolysis technique, J. Anal. Appl. Pyrol. 123(2017) 144–151. [15] Y.H. Cao, H. Yu, J. Tan, F. Peng, H.J. Wang, J. Li, W.X. Zheng, N.B. Wong, Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane, Carbon 57(2013) 433–442. [16] R. Arrigo, M.E. Schuster, Z.L. Xie, Y. Yi, G. Wowsnick, L.L. Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop-Gericke, R. Schlögl, Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts, ACS Catal. 5(5) (2015) 2740–2753. [17] K.L. Chee, N.A. Mohd Zabidi, M.S. Chandra, Synthesis of cobalt nano particles on silica support using the strong electrostatic adsorption (SEA) method, Defect Diffusion Forum 312–315(2011) 370–375. [18] X.M. Ning, H. Yu, F. Peng, H.J. Wang, Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO, J. Catal. 325(2015) 136–144. [19] Z.B. Lei, L.Z. An, L.Q. Dang, M.Y. Zhao, J.Y. Shi, S.Y. Bai, Y.D. Cao, Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation, Microporous Mesoporous Mater. 119(1–3) (2009) 30–38. [20] S. Armenise, L. Roldán, Y. Marco, A. Monzón, E. García-Bordejé, Elucidation of catalyst support effect for NH3 decomposition using Ru nanoparticles on nitrogen-functionalized carbon nanofiber monoliths, J. Phys. Chem. C 116(50) (2012) 26385–26395. [21] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc. 133(8) (2011) 2362–2365. [22] L.L. Zhang, A.Q. Wang, W.T. Wang, Y.Q. Huang, X.Y. Liu, S. Miao, J.Y. Liu, T. Zhang, Co–N–C catalyst for C-C coupling reactions: On the catalytic performance and active sites, ACS Catal. 5(11) (2015) 6563–6572. [23] X.Y. Dai, Z. Chen, T. Yao, L.R. Zheng, Y. Lin, W. Liu, H.X. Ju, J.F. Zhu, X. Hong, S.Q. Wei, Y.E. Wu, Y.D. Li, Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene, Chem. Commun. (Camb.) 53(84) (2017) 11568–11571. [24] J.H. Hu, Z.W. Zhang, F. Wang, S.F. Zheng, J.P. Cai, J.L. Qin, W.W. Liu, S. Liang, X. M. Jiang, A controllable synthesis of nitrogen-doped mesoporous carbon supported MoS2 catalysts for hydrodesulfurization of thiophene, RSC Adv. 6(103) (2016) 101544–101551. [25] Z.W. Zhang, X.M. Jiang, J.H. Hu, C.J. Yue, J.T. Zhang, Controlled synthesis of mesoporous nitrogen-doped carbon supported Ni-Mo sulfides for hydrodesulfurization of dibenzenethiophene, Catal. Lett. 147(10) (2017) 2515–2522. [26] L. Li, M.J. Wang, L.X. Huang, X.D. Liu, X.Y. Zhang, H.X. Sun, Q.Q. Yu, F. Yang, Q.X. Guo, B.J. Shen, Electron-donating-accepting behavior between nitrogen-doped carbon materials and Fe species and its promotion for DBT hydrodesulfurization, Appl. Catal. B: Environ. 254(2019) 360–370. [27] D.W. Gao, A.J. Duan, X. Zhang, Z. Zhao, E. Hong, J.M. Li, H. Wang, Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS, Appl. Catal. B: Environ. 165(2015) 269–284. [28] P.A. Nikulshin, V.A. Salnikov, A.V. Mozhaev, P.P. Minaev, V.M. Kogan, A.A. Pimerzin, Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions, J. Catal. 309(2014) 386–396. [29] S.P. Wang, C.L. Han, J. Wang, J. Deng, M.L. Zhu, J. Yao, H.R. Li, Y. Wang, Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation, Chem. Mater. 26(23) (2014) 6872–6877. [30] G. Wu, C.M. Johnston, N.H. Mack, K. Artyushkova, M. Ferrandon, M. Nelson, J.S. Lezama-Pacheco, S.D. Conradson, K.L. More, D.J. Myers, P. Zelenay, Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells, J. Mater. Chem. 21(30) (2011) 11392. [31] T. Fujikawa, M. Kato, T. Ebihara, K. Hagiwara, T. Kubota, Y. Okamoto, Development of highly active Co-Mo catalysts with phosphorus and citric acid for ultra-deep desulfurization of diesel fractions (part 2) characterization of active sites, J. Jpn. Petrol. Inst. 48(2) (2005) 114–120. [32] J.V. Lauritsen, S. Helveg, E. Lægsgaard, I. Stensgaard, B.S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts, J. Catal. 197(1) (2001) 1–5. [33] H. Topsøe, The role of Co-Mo-S type structures in hydrotreating catalysts, Appl. Catal. A: Gen. 322(2007) 3–8. [34] S.V. Budukva, O.V. Klimov, D.D. Uvarkina, Y.A. Chesalov, I.P. Prosvirin, T.V. Larina, A.S. Noskov, Effect of citric acid and triethylene glycol addition on the reactivation of CoMo/γ-Al2O3 hydrotreating catalysts, Catal. Today 329(2019) 35–43. [35] X. Tuaev, J.P. Paraknowitsch, R. Illgen, A. Thomas, P. Strasser, Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles, Phys. Chem. Chem. Phys. 14(18) (2012) 6444–6447. [36] L.J. Jia, D.A. Bulushev, O.Y. Podyacheva, A.I. Boronin, L.S. Kibis, E.Y. Gerasimov, S. Beloshapkin, I.A. Seryak, Z.R. Ismagilov, J.R.H. Ross, Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid, J. Catal. 307(2013) 94–102. [37] H. Feng, J. Ma, Z. Hu, Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: A density functional study, J. Mater. Chem. 20(9) (2010) 1702. [38] X.L. Wang, P. Du, Z. Zhao, J.L. Mei, Z.T. Chen, Y.Y. Li, P. Zheng, J.Y. Fan, A.J. Duan, C.M. Xu, Optimal synthesis of hierarchical porous composite ZSM-5/SBA-16 for ultradeep hydrodesulfurization of dibenzothiophene and 4, 6-dimethyldibenzothiophene. Part 2: The influence of aging temperature on the properties of NiMo catalysts, Energy Fuels 32(7) (2018) 7800–7809. [39] Z.Q. Wang, L.X. Sun, F. Xu, X.J. Peng, The synthesis of nitrogen-doped mesoporous carbon spheres for hydrogen storage, Mater. Sci. Forum 852(2016) 864–869. [40] A. Badzian, T. Badzian, E. Breval, A. Piotrowski, Nanostructured, nitrogendoped carbon materials for hydrogen storage, Thin Solid Films 398–399(2001) 170–174. [41] X.L. Ma, K. Sakanishi, T. Isoda, I. Mochida, Determination of sulfur compounds in non-polar fraction of vacuum gas oil, Fuel 76(4) (1997) 329–339. [42] X. Ma, K. Sakanishi, T. Isoda, I. Mochida, Determination of sulfur compounds in non-polar fraction of vacuum gas oil, Fuel 76(1997) 329–339. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[7] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[8] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[9] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[10] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[11] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[12] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[13] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[14] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[15] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
Viewed | ||||||
Full text 61
|
|
|||||
Abstract |
|
|||||