Chinese Journal of Chemical Engineering ›› 2022, Vol. 42 ›› Issue (2): 380-388.DOI: 10.1016/j.cjche.2021.02.010
Previous Articles Next Articles
Jiankang Wang1,2, Yajing Wang1,2, Zhongping Yao1, Zhaohua Jiang1
Received:
2020-07-22
Revised:
2020-11-19
Online:
2022-03-30
Published:
2022-02-28
Contact:
Jiankang Wang,E-mail:wangjiankang@yznu.edu.cn;Zhongping Yao,E-mail:yaozhongping@hit.edu.cn
Supported by:
Jiankang Wang1,2, Yajing Wang1,2, Zhongping Yao1, Zhaohua Jiang1
通讯作者:
Jiankang Wang,E-mail:wangjiankang@yznu.edu.cn;Zhongping Yao,E-mail:yaozhongping@hit.edu.cn
基金资助:
Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388.
Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution[J]. 中国化学工程学报, 2022, 42(2): 380-388.
[1] H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction, Applied Catalysis B:Environmental, 261 (2020) 118240 [2] X. Yan, M. Gu, Y. Wang, L. Xu, Y. Tang, R. Wu, In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis, Nano Research, 13 (2020) 975-982 [3] H. Xu, B. Fei, G. Cai, Y. Ha, J. Liu, H. Jia, J. Zhang, M. Liu, R. Wu, Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting, Advanced Energy Materials, 10 (2020) 1902714 [4] E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, Journal of the American Chemical Society, 135 (2013) 9267-9270 [5] Y. Shi, B. Zhang, Recent advances in transition metal phosphide nanomaterials:synthesis and applications in hydrogen evolution reaction, Chemical Society Reviews, 45 (2016) 1529-1541 [6] F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions-A Review, International Journal of Hydrogen Energy, 40 (2015) 256-274 [7] D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J. Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, H. Dai, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction, Journal of the American Chemical Society, 137 (2015) 1587-1592 [8] Y. Yan, B. Xia, Z. Xu, X. Wang, Recent development of molybdenum sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction, ACS Catalysis, 4 (2014) 1693-1705 [9] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chemical Society Reviews, 44 (2015) 5148-5180 [10] M. Zeng, Y. Li, Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction, Journal of Materials Chemistry A, 3 (2015) 14942-14962 [11] B. Cao, G.M. Veith, J.C. Neuefeind, R.R. Adzic, P.G. Khalifah, Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction, Journal of the American Chemical Society, 135 (2013) 19186-19192 [12] N. Kornienko, J. Resasco, N. Becknell, C.M. Jiang, Y.S. Liu, K. Nie, X. Sun, J. Guo, S.R. Leone, P. Yang, Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst, Journal of the American Chemical Society, 137 (2015) 7448-7455 [13] J. Zhang, W. Xiao, P. Xi, S. Xi, Y. Du, D. Gao, J. Ding, Activating and optimizing activity of CoS2 for hydrogen evolution reaction through the synergic effect of N dopants and S vacancies, ACS Energy Letters, 2 (2017) 1022-1028 [14] J. Zhang, Y. Liu, C. Sun, P. Xi, S. Peng, D. Gao, D. Xue, Accelerated hydrogen evolution reaction in CoS2 by transition-metal doping, ACS Energy Letters, 3 (2018) 779-786 [15] Y. Cui, C. Zhou, X. Li, Y. Gao, J. Zhang, High performance electrocatalysis for hydrogen evolution reaction using nickel-doped CoS2 nanostructures:experimental and DFT insights, Electrochimica Acta, 228 (2017) 428-435 [16] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCO2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting, Angewandte Chemie International Edition, 55 (2016) 6290-6294 [17] C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting, Nano Energy, 48:(2018) 73-80 [18] G. Cai, W. Zhang, L. Jiao, S.H. Yu, H.L. Jiang, Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting, Chem, 2:(2017) 791-802 [19] L. Jiao, Y.-X. Zhou, H.-L. Jiang, Metal-organic framework-based CoP/reduced graphene oxide:high-performance bifunctional electrocatalyst for overall water splitting, Chemical Science, 7 (2016) 1690-1695 [20] L. Yang, X. Zeng, W. Wang, D. Cao, Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells, Advanced Functional Materials, 28 (2018) 1704537 [21] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincä, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nature Materials, 16 (2017) 220-224 [22] Y. Li, M. Lu, Y. Wu, Q. Ji, H. Xu, J. Gao, G. Qian, Q. Zhang, Morphology regulation of metal-organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis, Journal of Materials Chemistry A, 8 (2020) 18215-18219 [23] Y. Li, T. Zhao, M. Lu, Y. Wu, Y. Xie, H. Xu, J. Gao, J. Yao, G. Qian, Q. Zhang, Enhancing Oxygen Evolution Reaction through Modulating Electronic Structure of Trimetallic Electrocatalysts Derived from Metal-Organic Frameworks, Small, 15 (2019) 1901940 [24] Z. Chen, H. Qing, K. Zhou, D. Sun, R. Wu, Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction, Progress in Materials Science, 108 (2020) 100618 [25] A. Shahraei, A. Moradabadi, I. Martinaiou, S. Lauterbach, S. Klemenz, S. Dolique, H.-J. Kleebe, P. Kaghazchi, U.I. Kramm, Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me-N-C), ACS Applied Materials & Interfaces, 9 (2017) 25184-25193 [26] M. Kuang, Q. Wang, P. Han, G. Zheng, Cu, Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions, Advanced Energy Materials, 7 (2017) 1700193 [27] H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang, R. Zou, Metal-Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Co-Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution, Advanced Energy Materials, 7 (2017) 1601671 [28] Z. Chen, Y. Ha, H. Jia, X. Yan, M. Chen, M. Liu, R. Wu, Oriented Transformation of Co-LDH into 2D/3D ZIF-67 to Achieve Co-N-C Hybrids for Efficient Overall Water Splitting, Advanced Energy Materials, 9 (2019) 1803918 [29] Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo, D. Sun, M. Liu, F. Fang, Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction, Advanced Materials, 30 (2018) 1802011 [30] C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational Design of Metal-Organic Framework Derived Hollow NiCO2O4 Arrays for Flexible Supercapacitor and Electrocatalysis, Advanced Energy Materials, 7 (2017) 1602391 [31] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, Journal of the American Chemical Society, 135 (2013) 16977-16987 [32] J.T. Kloprogge, R.L. Frost, Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites, Journal of Solid State Chemistry, 146 (1999) 506-515 [33] Y. Yan, K. Li, X. Chen, Y. Yang, J.M. Lee, Heterojunction-Assisted Co3S4@Co3O4 Core-Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions, Small, 13 (2017) 1701724 [34] Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co3S4@MoS2 Heterostructures as Efficient Bifunctional Catalysts, Chemistry of Materials, 29 (2017) 5566-5573 [35] C. Faur-Brasquet, Z. Reddad, K. Kadirvelu, P. Le Cloirec, Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models, Applied Surface Science, 196 (2002) 356-365 [36] J.A. Duffy, Optical electronegativity, χ*, of transition-metal ions in simple compounds, Journal of the Chemical Society, Dalton Transactions, (1983) 1475-1478 [37] S. Xie, J. Gou, B. Liu, C. Liu, Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials, Inorganic Chemistry Frontiers, 5 (2018) 1218-1225 [38] A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCO2S4 Nanowire Arrays Supported on Ni Foam:An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions, Advanced Functional Materials, 26 (2016) 4661-4672 [39] Y. Jiang, X. Qian, C. Zhu, H. Liu, L. Hou, Nickel Cobalt Sulfide Double-Shelled Hollow Nanospheres as Superior Bifunctional Electrocatalysts for Photovoltaics and Alkaline Hydrogen Evolution, ACS Applied Materials & Interfaces, 10 (2018) 9379-9389 [40] J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production:Insights into the Origin of their Catalytic Activity, ACS Catalysis, 2 (2012) 1916-1923 [41] X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu, X. Han, Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting, Nanoscale, 10 (2018) 4816-4824 [42] M. Zhu, Z. Zhang, H. Zhang, H. Zhang, X. Zhang, L. Zhang, S. Wang, Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution, Journal of Colloid and Interface Science, 509 (2018) 522-528 [43] S. Shit, S. Chhetri, W. Jang, N.C. Murmu, H. Koo, P. Samanta, T. Kuila, Cobalt Sulfide/Nickel Sulfide Heterostructure Directly Grown on Nickel Foam:An Efficient and Durable Electrocatalyst for Overall Water Splitting Application, ACS Applied Materials & Interfaces, 10 (2018) 27712-27722 [44] M. Rudolph, E.L. Ratcliff, Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes, Nature Communications, 8 (2017) 1048 [45] M. Wang, Z. Li, C. Wang, R. Zhao, C. Li, D. Guo, L. Zhang, L. Yin, Novel Core-Shell FeOF/Ni(OH)2 Hierarchical Nanostructure for All-Solid-State Flexible Supercapacitors with Enhanced Performance, Advanced Functional Materials, 27 (2017) 1701014 [46] F. Li, G. F. Han, H. J. Noh, Y. Lu, J. Xu, Y. Bu, Z. Fu, J. B. Baek, Construction of porous Mo3P/Mo nanobelts as catalyst for efficient water splitting, Angewandte Chemie International Edition, 57 (2018) 14139 [47] K.A. Kuttiyiel, K. Sasaki, W. F. Chen, D. Su, R.R. Adzic, Core-shell, hollow-structured iridium-nickel nitride nanoparticles for the hydrogen evolution reaction, Journal of Materials Chemistry A, 2 (2014) 591-594 |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[3] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[4] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[5] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[6] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[7] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[8] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[9] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
[10] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[11] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[12] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[13] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[14] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[15] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 96
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||