Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 40-49.DOI: 10.1016/j.cjche.2021.09.002
Previous Articles Next Articles
Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma
Received:
2021-07-05
Revised:
2021-08-31
Online:
2022-04-28
Published:
2022-03-28
Contact:
Yuting Tang,E-mail:eptangyt@scut.edu.cn
Supported by:
Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma
通讯作者:
Yuting Tang,E-mail:eptangyt@scut.edu.cn
基金资助:
Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49.
Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases[J]. 中国化学工程学报, 2022, 43(3): 40-49.
[1] G.Y. Chen, S. Tian, B. Liu, M.T. Hu, W.C. Ma, X.P. Li, Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste, Waste Manag. 103 (2020) 268-275 [2] A. Mohseni-Bandpei, M. Majlesi, M. Rafiee, S. Nojavan, P. Nowrouz, H. Zolfagharpour, Polycyclic aromatic hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous health-care waste, Chemosphere 227 (2019) 277-288 [3] R.Y. Chen, Q.W. Li, X.K. Xu, D.D. Zhang, Pyrolysis kinetics and reaction mechanism of representative non-charring polymer waste with micron particle size, Energy Convers. Manag. 198 (2019) 111923 [4] J.W. Chen, X.Q. Ma, Z.S. Yu, T.H. Deng, X.F. Chen, L. Chen, M.Q. Dai, A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS, Bioresour. Technol. 289 (2019) 121585 [5] Y.F. Zhou, Y.F. Han, Y.J. Lu, H.C. Bai, X.Y. Hu, X.C. Zhang, F.H. Xie, X. Luo, J.D. Wang, Y.R. Yang, Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture, Chin. J. Chem. Eng. 28 (12) (2020) 2955-2967 [6] A. Hafizi, M.R. Rahimpour, M. Heravi, Experimental investigation of improved calcium-based CO2 sorbent and Co3O4/SiO2 oxygen carrier for clean production of hydrogen in sorption-enhanced chemical looping reforming, Int. J. Hydrog. Energy 44 (33) (2019) 17863-17877 [7] G.Z. Ji, H. Yang, M.Z. Memon, Y. Gao, B.Y. Qu, W. Fu, G. Olguin, M. Zhao, A.M. Li, Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures, Appl. Energy 267 (2020) 114874 [8] X.T. Liu, J.F. Shi, L. He, X.X. Ma, S.S. Xu, Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature, Chin. J. Chem. Eng. 25 (5) (2017) 572-580 [9] H.R. Radfarnia, M.C. Iliuta, Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture, Ind. Eng. Chem. Res. 51 (31) (2012) 10390-10398 [10] X.T. Liu, X.X. Ma, L. He, S.S. Xu, Effect of pre-calcination for modified CaO-based sorbents on multiple carbonation/calcination cycles, Chin. J. Chem. Eng. 25 (10) (2017) 1412-1421 [11] L. Yang, H.B. Yu, S.Q. Wang, H.W. Wang, Q.B. Zhou, Carbon dioxide captured from flue gas by modified Ca-based sorbents in fixed-bed reactor at high temperature, Chin. J. Chem. Eng. 21 (2) (2013) 199-204 [12] W. Zhang, Y.J. Li, B.Y. Li, Y.Z. Wang, Y.Q. Qian, Z.Y. Wang, Simultaneous NO/CO2 removal by Cu-modified biochar/CaO in carbonation step of calcium looping process, Chem. Eng. J. 392 (2020) 123659 [13] R.Y. Sun, H.L. Zhu, R. Xiao, Enhancement of CO2 capture and microstructure evolution of the spent calcium-based sorbent by the self-reactivation process, Chin. J. Chem. Eng. 29 (2021) 160-166 [14] A. Nawar, M. Ali, M. Mahmood, M. Anwar, Z.A. Khan, Effect of structural promoters on calcium based sorbents from waste derived sources, Mater. Today Commun. 24 (2020) 101075 [15] C. Luo, Y. Zheng, J. Guo, B. Feng, Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle, Fuel 127 (2014) 124-130 [16] J. Sun, W. Wang, Y.D. Yang, S. Cheng, Y.F. Guo, C.W. Zhao, W.Q. Liu, P. Lu, Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation, Fuel 266 (2020) 117056 [17] Y.J. Li, W.J. Wang, X.X. Cheng, M.Y. Su, X.T. Ma, X. Xie, Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles, Fuel 142 (2015) 21-27 [18] J. Sun, Y. Sun, Y.D. Yang, X.L. Tong, W.Q. Liu, Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature, Appl. Energy 242 (2019) 919-930 [19] J. Park, K.B. Yi, Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO-MgO absorbent for sorption-enhanced hydrogen production, Int. J. Hydrog. Energy 37 (1) (2012) 95-102 [20] M. Benitez-Guerrero, J.M. Valverde, A. Perejon, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process, Chem. Eng. J. 346 (2018) 549-556 [21] G.L. Chi, B.X. Shen, R.R. Yu, C. He, X. Zhang, Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts, J. Hazard. Mater. 330 (2017) 83-92 [22] X.T. Ma, Y.J. Li, L.B. Duan, E. Anthony, H.T. Liu, CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions, Appl. Energy 225 (2018) 402-412 [23] H.C.Y. Foo, I.S. Tan, A.R. Mohamed, K.T. Lee, Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents, Fuel 260 (2020) 116354 [24] H.C. Chen, F. Wang, C.S. Zhao, N. Khalili, The effect of fly ash on reactivity of calcium based sorbents for CO2 capture, Chem. Eng. J. 309 (2017) 725-737 [25] W. Zhang, X.T. Ma, Y.J. Li, J.L. Zhao, Z.Y. Wang, A study of the synergistic effects of Mn/steam on CO2 capture performance of CaO by experiment and DFT calculation, Greenh. Gases:Sci. Technol. 9 (2) (2019) 409-423 [26] H.X. Guo, X.C. Kou, Y.J. Zhao, S.P. Wang, Q. Sun, X.B. Ma, Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent:Textural properties, electron donation, and oxygen vacancy, Chem. Eng. J. 334 (2018) 237-246 [27] Y.L. Su, R. Han, J.H. Gao, S.Y. Wei, F. Sun, G.B. Zhao, Novel method for regeneration/reactivation of spent dolomite-based sorbents from calcium looping cycles, Chem. Eng. J. 360 (2019) 148-156 [28] J.Y. Jing, T.Y. Li, X.W. Zhang, S.D. Wang, J. Feng, W.A. Turmel, W.Y. Li, Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism, Appl. Energy 199 (2017) 225-233 [29] X.T. Ma, Y.J. Li, L. Shi, Z.R. He, Z.Y. Wang, Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process, Appl. Energy 168 (2016) 85-95 [30] A. Antzara, E. Heracleous, A.A. Lemonidou, Improving the stability of synthetic CaO-based CO2 sorbents by structural promoters, Appl. Energy 156 (2015) 331-343 [31] S. Yasipourtehrani, S.C. Tian, V. Strezov, T. Kan, T. Evans, Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture, Chem. Eng. J. 387 (2020) 124140 [32] Y. Lin, Z. Chen, M. Dai, S. Fang, Y. Liao, Z. Yu, X. Ma, Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM), Bioresour. Technol. 259 (2018) 173-180 [33] S.L. Huang, H. Tong, J.G. Wang, Preparation and property of Zr-doped calcium oxide for carbon dioxide absorption at high temperature, Environ. Sci. Technol. 34(2) (2011) 85-90. (in Chinese) [34] C.L. Su, L.B. Duan, F. Donat, E.J. Anthony, From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture, Appl. Energy 210 (2018) 117-126 [35] S.M. Hashemi, D. Karami, N. Mahinpey, Solution combustion synthesis of zirconia-stabilized calcium oxide sorbents for CO2 capture, Fuel 269 (2020) 117432 [36] J. Phromprasit, J. Powell, S. Assabumrungrat, Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application, Chem. Eng. J. 284 (2016) 1212-1223 [37] Y.C. Hu, W.Q. Liu, H.Q. Chen, Z.J. Zhou, W. Wang, J. Sun, X.W. Yang, X. Li, M.H. Xu, Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture, Fuel 181 (2016) 199-206 [38] J.J. Cai, F. Yan, M. Luo, S.Z. Wang, Highly stable CO2 capture performance of binary doped carbide slag synthesized through liquid precipitation method, Fuel 280 (2020) 118575 [39] M. Mohammadi, P. Lahijani, A.R. Mohamed, Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture:Experimental and kinetic studies, Chem. Eng. J. 243 (2014) 455-464 [40] P. César de Carvalho Pinto, G. Voga Pereira, L. Schiavo de Rezende, F. C C Moura, J. Cláudio Belchior, CO2 capture performance and mechanical properties of Ca(OH)2-based sorbent modified with MgO and (NH4)2HPO4 for Calcium Looping cycle, Fuel 256 (2019) 115924 [41] V. Manovic, E.J. Anthony, Carbonation of CaO-based sorbents enhanced by steam addition, Ind. Eng. Chem. Res. 49 (19) (2010) 9105-9110 [42] H. Gupta, L.S. Fan, Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas, Ind. Eng. Chem. Res. 41 (16) (2002) 4035-4042 [43] S. Scaccia, G. Vanga, D.M. Gattia, S. Stendardo, Preparation of CaO-based sorbent from coal fly ash cenospheres for calcium looping process, J. Alloy. Compd. 801 (2019) 123-129 [44] J. Sun, W.Q. Liu, Y.C. Hu, J.Q. Wu, M.K. Li, X.W. Yang, W. Wang, M.H. Xu, Enhanced performance of extruded-spheronized carbide slag pellets for high temperature CO2 capture, Chem. Eng. J. 285 (2016) 293-303 [45] C.L. Qin, J.J. Yin, H. An, W.Q. Liu, B. Feng, Performance of extruded particles from calcium hydroxide and cement for CO2 capture, Energy Fuels 26 (1) (2012) 154-161 [46] V. Manovic, Y.H. Wu, I. He, E.J. Anthony, Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles, Environ. Sci. Technol. 46 (22) (2012) 12720-12725 [47] Y.C. Hu, M.Y. Qu, H.L. Li, Y.D. Yang, J.P. Yang, W.Q. Qu, W.Q. Liu, Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture, Fuel 236 (2019) 1043-1049 |
[1] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[2] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[3] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 98-105. |
[4] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[5] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[6] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[7] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[8] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
[9] | Peng Tan, Yao Jiang, Qiurong Wu, Chen Gu, Shichao Qi, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Light-responsive adsorbents with tunable adsorbent-adsorbate interactions for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 104-111. |
[10] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[11] | Tao Jiang, Fei Xiao, Yujun Zhao, Shengping Wang, Xinbin Ma. High-temperature CO2 sorbents with citrate and stearate intercalated Ca—Al hydrotalcite-like as precursor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 177-184. |
[12] | Yu Dong, Tiantian Ping, Shufeng Shen. Solubility of CO2 in nonaqueous system of 2-(butylamino)ethanol with 2-butoxyethanol: Experimental data and model representation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 441-448. |
[13] | Wan Zhang, Yingjie Li, Yuqi Qian, Boyu Li, Jianli Zhao, Zeyan Wang. NO removal performance of CO in carbonation stage of calcium looping for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 30-38. |
[14] | Cao Kuang, Shuzhong Wang, Ming Luo, Jun Zhao. Reactivity study and kinetic evaluation of CuO-based oxygen carriers modified by three different ores in chemical looping with oxygen uncoupling (CLOU) process [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 54-63. |
[15] | Chunxiao Zhang, Yingjie Li, Zhiguo Bian, Wan Zhang, Zeyan Wang. Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca(OH)2 cycles [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 76-85. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 159
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||