Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 230-239.DOI: 10.1016/j.cjche.2021.11.006
Previous Articles Next Articles
Lei Hu1, Shunhui Tao1, Junting Xian1, Xiaodong Zhang1, Yao Liu1, Xiaojie Zheng1, Xiaoqing Lin1,2,3
Received:
2021-08-26
Revised:
2021-11-03
Online:
2022-04-28
Published:
2022-03-28
Contact:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
Supported by:
Lei Hu1, Shunhui Tao1, Junting Xian1, Xiaodong Zhang1, Yao Liu1, Xiaojie Zheng1, Xiaoqing Lin1,2,3
通讯作者:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
基金资助:
Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 230-239.
Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. 中国化学工程学报, 2022, 43(3): 230-239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.006
[1] X.Q. Lin, Y. Liu, X.J. Zheng, N. Qureshi, High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification, Ind. Crop. Prod. 162 (2021) 113258 [2] S.S. Chen, T. Maneerung, D.C.W. Tsang, Y.S. Ok, C.H. Wang, Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts, Chem. Eng. J. 328 (2017) 246-273 [3] C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural, Chem. Soc. Rev. 49 (13) (2020) 4273-4306 [4] C.B.T.L. Lee, T.Y. Wu, A review on solvent systems for furfural production from lignocellulosic biomass, Renew. Sustain. Energy Rev. 137 (2021) 110172 [5] X.Y. Li, R. Xu, J.X. Yang, S.X. Nie, D. Liu, Y. Liu, C.L. Si, Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation, Ind. Crop. Prod. 130 (2019) 184-197 [6] H. Chang, I. Bajaj, A.H. Motagamwala, A. Somasundaram, G.W. Huber, C.T. Maravelias, J.A. Dumesic, Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure, Green Chem. 23 (9) (2021) 3277-3288 [7] H. Li, Y. Zhong, L.X. Wang, Q. Deng, J. Wang, Z.L. Zeng, X.X. Cao, S.G. Deng, Functionalized metal-organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 33 (2021) 167-174 [8] H.Y. Wang, C.H. Zhu, D. Li, Q.Y. Liu, J. Tan, C.G. Wang, C.L. Cai, L.L. Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sustain. Energy Rev. 103 (2019) 227-247 [9] Q.D. Hou, X.H. Qi, M.N. Zhen, H.L. Qian, Y.F. Nie, C.Y.L. Bai, S.Q. Zhang, X.Y. Bai, M.T. Ju, Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural, Green Chem. 23 (1) (2021) 119-231 [10] S.M. Kang, J.X. Fu, G. Zhang, From lignocellulosic biomass to levulinic acid:A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94 (2018) 340-362 [11] C.L. Chen, L.C. Wang, B. Zhu, Z.Q. Zhou, S.I. El-Hout, J. Yang, J. Zhang, 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts, processes and reaction mechanism, J. Energy Chem. 54 (2021) 528-554 [12] L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sustain. Energy Rev. 74 (2017) 230-257 [13] B. Hu, L. Warczinski, X.Y. Li, M.H. Lu, J. Bitzer, M. Heidelmann, T. Eckhard, Q. Fu, J. Schulwitz, M. Merko, M.S. Li, W. Kleist, C. Hättig, M. Muhler, B.X. Peng, Formic acid-assisted selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over bifunctional Pd nanoparticles supported on N-doped mesoporous carbon, Angew. Chem. Int. Ed. 60 (12) (2021) 6807-6815 [14] F. Yang, J.J. Tang, R. Ou, Z.J. Guo, S.Y. Gao, Y.Z. Wang, X.Y. Wang, L. Chen, A.H. Yuan, Fully catalytic upgrading synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B:Environ. 256 (2019) 117786 [15] L. Hu, Y.T. Jiang, Z. Wu, X.Y. Wang, A.Y. He, J.X. Xu, J.M. Xu, State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural, J. Clean. Prod. 276 (2020) 124219 [16] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion ofcarbohydrates to initialplatform chemicals:Chemistry and sustainability, Chem. Rev. 118 (2) (2018) 505-613 [17] K. Enomoto, T. Hosoya, H. Miyafuji, High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system, Cellulose 25 (4) (2018) 2249-2257 [18] R.L. Johnson, F.A. Perras, M.P. Hanrahan, M. Mellmer, T.F. Garrison, T. Kobayashi, J.A. Dumesic, M. Pruski, A.J. Rossini, B.H. Shanks, Condensed phase deactivation of solid Brønstedacids in the dehydration of fructose to hydroxymethylfurfural, ACS Catal. 9 (12) (2019) 11568-11578 [19] H.Y. Wang, J.J. Cui, Y.L. Zhao, Z.Y. Li, J.J. Wang, Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids, Green Chem. 23 (1) (2021) 405-411 [20] A. Sarwono, Z. Man, A. Idris, A.S. Khan, N. Muhammad, C.D. Wilfred, Optimization of ionic liquid assisted sugar conversion and nanofiltration membrane separation for 5-hydroxymethylfurfural, J. Ind. Eng. Chem. 69 (2019) 171-178 [21] C.J. Zhou, C. Shen, K.Y. Ji, J.B. Yin, L. Du, Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in amembrane dispersion microreactor, ACS Sustain. Chem. Eng. 6 (3) (2018) 3992-3999 [22] A.C. IJzer, E. Vriezekolk, T.DekicZivkovic, K. Nijmeijer, Adsorption kinetics of DowexTM OptiporeTM L493for the removal of the furan 5-hydroxymethylfurfural from sugar, J. Chem. Technol. Biotechnol. 91 (1) (2016) 96-104 [23] E. Valentin, H.G. Nam, P.H. Kim, H.W. Joo, H.J. Shim, Y.K. Chang, S. Mun, Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose, Sep. Purif. Technol. 133 (2014) 297-302 [24] H. Park, J.W. Kim, K.B. Lee, S. Mun, Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate, Sep. Purif. Technol. 237 (2020) 116357 [25] Y. Zhao, J. Xu, J. Wang, J.L. Wu, M.Z. Gao, B. Zheng, H. Xu, Q. Shi, J.X. Dong, Adsorptive separation offurfural/5-hydroxymethylfurfural in MAF-5 with ellipsoidal pores, Ind. Eng. Chem. Res. 59 (25) (2020) 11734-11742 [26] P. Dornath, W. Fan, Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent, Microporous Mesoporous Mater. 191 (2014) 10-17 [27] W.C. Yoo, N. Rajabbeigi, E.E. Mallon, M. Tsapatsis, M.A. Snyder, Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents, Microporous Mesoporous Mater. 184 (2014) 72-82 [28] W. Liu, F. Zheng, J. Li, A. Cooper, Anionic liquidreaction and separation process for production of hydroxymethylfurfural from sugars, AIChE J. 60 (1) (2014) 300-314 [29] M.León, T.D. Swift, V. Nikolakis, D.G. Vlachos, Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta, Langmuir 29 (22) (2013) 6597-6605 [30] C. Detoni, C.H. Gierlich, M. Rose, R. Palkovits, Selective liquid phaseadsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linkedpolymers, ACS Sustain. Chem. Eng. 2 (10) (2014) 2407-2415 [31] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [32] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [33] H. Gao, L. Ding, W.Q. Li, G.F. Ma, H. Bai, L. Li, Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide, ACS Macro Lett. 5 (3) (2016) 377-381 [34] J.Y. Zheng, L. Hu, X.D. He, Y. Liu, X.J. Zheng, S.H. Tao, X.Q. Lin, evaluation of pore structure of polarity-controllable post-cross-linked adsorption resins on the adsorption performance of 5-hydroxymethylfurfural in both single- and ternary-component systems, Ind. Eng. Chem. Res. 59 (39) (2020) 17575-17586 [35] L. Hu, J.Y. Zheng, Q. Li, S.H. Tao, X.J. Zheng, X.D. Zhang, Y. Liu, X.Q. Lin, Adsorption of 5-hydroxymethylfurfural,levulinic acid, formic acid, and glucose using polymericresins modified with differentfunctional groups, ACS Omega 6 (26) (2021) 16955-16968 [36] H.M. Tang, W.Y.Li, H.S. Jiang, R.J.Lin, Z. Wang, J.H.Wu, G.J. He, P.R. Shearing, D.J.L. Brett, ZIF-8-derived hollow carbon for efficient adsorption of antibiotics, Nanomaterials 9(1)(2019)E117 [37] X.J. Zheng, X.L. Xian, L. Hu, S.H.Tao, X.D. Zhang, Y. Liu, X.Q.Lin, Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification, Bioresourc. Technol. 339 (2021) 125575 [38] C.J.Shen, H. Yu, Z.G. Wang, Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)-adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide, Chem.Commun. 50 (76) (2014) 11238-11241 [39] B. Oktay, E.Çakmakçi, DOPO tethered Diels Alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings, Polymer 131 (2017) 132-142 [40] O.M. Ilinitch, V.B. Fenelonov, A.A. Lapkin, L.G. Okkel, V.V. Terskikh, K.I. Zamaraev, Intrinsic microporosity and gas transport in polyphenylene oxide polymers, Microporous Mesoporous Mater. 31 (1-2) (1999) 97-110 [41] P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book, A. Walton, The potential of organic polymer-based hydrogen storage materials, Phys. Chem. Chem. Phys. 9 (15) (2007) 1802-1808 [42] Y. Xu, J. Luo, X.Y. Liu, R. Liu, Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit, Prog. Org. Coat.141 (2020) 105543 [43] J.P. Dhanalakshmi, M.A. Raj, C.T. Vijayakumar, Thermal degradation kinetics of structurally diverse poly(bispropargyl ethers-bismaleimide) blends, Chin. J. Polym. Sci. 34 (3) (2016) 253-267 [44] M.H. Armbruster, J.B. Austin, The adsorption of gases on planesurfaces of mica, J. Am. Chem. Soc. 60 (2) (1938) 467-475 [45] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (1) (2010) 2-10 [46] Z. Wang, H.M.Tang, W.Y. Li, J.W. Li, R.Y. Xu, K.N. Zhang, G.J. He, P.R. Shearing, D.J.L. Brett, Core-shell TiO2@C ultralong nanotubes with enhanced adsorption of antibiotics, J. Mater. Chem. A 7(32) (2019) 19081-19086 [47] L. Meng, X. Gui, Z. Yun, Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens, Chin. J. Chem. Eng. 32 (2021) 151-158 [48] Z. Wang, G.J.Wang, W.Y. Li, Z. Cui, J.H. Wu, I. Akpinar, L. Yu, G.J. He, J.Q. Hu, Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants, Appl. Surf. Sci. 550 (2021) 149313 [49] J.Y.Zheng, B.Y. Pan, J.X. Xiao, X.D. He, Z. Chen, Q.L.Huang, X.Q.Lin, Experimental and mathematical simulation of noncompetitive and competitive adsorptiondynamic of formic acid-levulinic acid-5-hydroxymethylfurfural from single, binary, andternary systems in a fixed-bed column of SY-01 resin, Ind. Eng. Chem. Res. 57 (25) (2018) 8518-8528 [50] R. Khosravi, G. Moussavi, M.T. Ghaneian, M.H. Ehrampoush, B. Barikbin, A.A. Ebrahimi, G. Sharifzadeh, Chromium adsorption from aqueous solution using novel green nanocomposite:Adsorbent characterization, isotherm, kinetic and thermodynamic investigation, J. Mol. Liq. 256 (2018) 163-174 [51] X.Q. Zhou, J.S. Fan, N. Li, W.B. Qian, X.Q. Lin, J.L. Wu, J. Xiong, J.X. Bai, H.J. Ying, Adsorption thermodynamics and kinetics of uridine 5 '-monophosphate on a gel-typeanion exchange resin, Ind. Eng. Chem. Res. 50 (15) (2011) 9270-9279 [52] Y. Yu, Y.Y. Zhuang, Z.H. Wang, M.Q. Qiu, Adsorption of water-soluble dyes onto modified resin, Chemosphere 54 (3) (2004) 425-430 [53] P.D. Pathak, S.A. Mandavgane, Preparation and characterization of raw and carbon from banana peel by microwave activation:Application in citric acid adsorption, J. Environ. Chem. Eng. 3 (4) (2015) 2435-2447 [54] O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. SantosJr, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal:Kinetic, isotherm and thermodynamic studies, Chem. Eng. J. 288 (2016) 778-788 [55] T.S. Anirudhan, P.G. Radhakrishnan, Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue, Appl. Surf. Sci. 255 (9) (2009) 4983-4991 [56] X.J. Hu, Y.S. Li, Y. Wang, X.X. Li, H.Y. Li, X. Liu, P. Zhang, Adsorption kinetics, thermodynamics and isotherm of thiacalix[4]arene-loaded resin to heavy metal ions, Desalination 259 (1-3) (2010) 76-83 [57] Y.Y. Chen, D.J. Zhang, Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin, Chem. Eng. J. 254 (2014) 579-585 [58] X.Q. Lin, Q.L.Huang, G.X. Qi, L. Xiong, C. Huang, X.F. Chen, H.L.Li, X.D. Chen, Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution:Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies, Chemosphere 171 (2017) 231-239 [59] D.K. Mahmoud, M.A.M. Salleh, W.A. Karim, A. Idris, Z.Z. Abidin, Batch adsorption of basic dye using acid treated kenaf fibre char:Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J.181-182(2012) 449-457 [60] S. Lagergren, Zur Theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1-39 [61] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem. 34 (5) (1999) 451-465 [62] S.R. Cao, T.T. Tang, C.X.Xi, Z.Q. Chen, Fabricating magnetic GO/ZIF-8 nanocomposite for amphetamine adsorption from water:Capability and mechanism, Chem. Eng. J. 422 (2021) 130096 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[5] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[6] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[7] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[8] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[9] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[10] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[11] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[12] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[13] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[14] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[15] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||