[1] K. Liang, S.M. Jin, H.Z. Chen, J.Z. Ren, W.F. Shen, S.A. Wei, Parametric optimization of packed bed for activated coal fly ash waste heat recovery using CFD techniques, Chin. J. Chem. Eng. 28 (2) (2020) 518-525 [2] R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97 (2012) 1-23 [3] N.N. Wang, X.Y. Sun, Q. Zhao, Y. Yang, P. Wang, Leachability and adverse effects of coal fly ash:A review, J. Hazard. Mater. 396 (2020) 122725 [4] N.N. Wang, X.Y. Sun, Q. Zhao, P. Wang, Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement:System parameters, kinetics, and proposed mechanism, Chem. Eng. J. 406 (2021) 126734 [5] Z.T. Yao, X.S. Ji, P.K. Sarker, J.H. Tang, L.Q. Ge, M.S. Xia, Y.Q. Xi, A comprehensive review on the applications of coal fly ash, Earth-Sci. Rev. 141 (2015) 105-121 [6] K. Chassapis, M. Roulia, E. Vrettou, D. Fili, M. Zervaki, Biofunctional characteristics of lignite fly ash modified by humates:A new soil conditioner, Bioinorg. Chem. Appl. (2010) 457964 [7] C.G. Flores, H. Schneider, N.R. Marcilio, L. Ferret, J.C.P. Oliveira, Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture, Waste Manage. 70 (2017) 263-271 [8] W. Astuti, A. Chafidz, A.S. Al-Fateesh, A.H. Fakeeha, Removal of lead (Pb(II)) and zinc (Zn(II)) from aqueous solution using coal fly ash (CFA) as a dual-sites adsorbent, Chin. J. Chem. Eng. (2020), https://doi.org/10.1016/j.cjche.2020.08.046 [9] C.J. Shi, J.S. Qian, Increasing coal fly ash use in cement and concrete through chemical activation of reactivity of fly ash, Energy Sources 25 (6) (2003) 617-628 [10] R. Dandautiya, A.P. Singh, Utilization potential of fly ash and copper tailings in concrete as partial replacement of cement along with life cycle assessment, Waste Manage. 99 (2019) 90-101 [11] E.R. Teixeira, A. Camões, F.G. Branco, J.B. Aguiar, R. Fangueiro, Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete, Waste Manage. 94 (2019) 39-48 [12] C. Lanzerstorfer, Fly ash from coal combustion:Dependence of the concentration of various elements on the particle size, Fuel 228 (2018) 263-271 [13] C.V. Fernando, H.J. Feuerborn, S. Angelo, European Product Standards-Update on status and changes with relevance to CCPs, World of Coal Ash (WOCA) Conference, Lexington, 2013 [14] L. Yang, D.L. Li, Z.N. Zhu, M. Xu, X.K. Yan, H.J. Zhang, Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash, Fuel 242 (2019) 174-183 [15] J.C. Hower, J.G. Groppo, U.M. Graham, C.R. Ward, I.J. Kostova, M.M. Maroto-Valer, S.F. Dai, Coal-derived unburned carbons in fly ash:A review, Int. J. Coal Geol. 179 (2017) 11-27 [16] M.L. Gray, K.J. Champagne, Y. Soong, R.P. Killmeyer, M.M. Maroto-Valer, J.M. Andrésen, M.V. Ciocco, P.H. Zandhuis, Physical cleaning of high carbon fly ash, Fuel Process. Technol. 76 (1) (2002) 11-21 [17] M. Mojtaba, A. Asghar, B. Zahra, Mechanochemical sulfidization of a mixed oxide-sulphide copper ore by co-grinding with sulfur and its effect on the flotation efficiency. Chin. J. Chem. Eng. (2020) 28(3)743-748 [18] H.N. Wang, W.Q. Yang, X.K. Yan, L.J. Wang, Y.T. Wang, H.J. Zhang, Regulation of bubble size in flotation:A review, J. Environ. Chem. Eng. 8 (5) (2020) 104070 [19] G. Chen, S. Grano, S. Sobieraj, J. Ralston, The effect of high intensity conditioning on the flotation of a nickel ore, Part 2:Mechanisms, Miner. Eng. 12 (11) (1999) 1359-1373 [20] W. Sun, Y.H. Hu, J.P. Dai, R.Q. Liu, Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD, Trans. Nonferrous Met. Soc. China 16 (1) (2006) 198-202 [21] E. Tabosa, J. Rubio, Flotation of copper sulphides assisted by high intensity conditioning (HIC) and concentrate recirculation, Miner. Eng. 23 (15) (2010) 1198-1206 [22] Y.X. Yu, L.Q. Ma, L. Wu, G.C. Ye, X.F. Sun, The role of surface cleaning in high intensity conditioning, Powder Technol. 319 (2017) 26-33 [23] H. Schubert, On the turbulence-controlled microprocesses in flotation machines, Int. J. Miner. Process. 56 (1-4) (1999) 257-276 [24] Y.F. Chen, X.P. Zhang, Q. Shi, G.F. Zhang, Q. Li, Investigation of the flotation performance of nickel sulphide by high intensity agitation pretreatment, Sep. Sci. Technol. (2018) 1-5 [25] L. Yang, Z.N. Zhu, X. Qi, X.K. Yan, H.J. Zhang, The process of the intensification of coal fly ash flotation using a stirred tank, Minerals 8 (12) (2018) 597 [26] D. Feng, C. Aldrich, Effect of preconditioning on the flotation of coal,Chem. Eng. Commun. 192 (7) (2005) 972-983 [27] D.L. Li, Y.N. Liang, H.A. Wang, L. Yang, X.K. Yan, L.J. Wang, H.J. Zhang, Effect of slurry preconditioning on the occurrence of major minerals in the flotation products of coal, Int. J. Coal Prep. Util. (2020) 1-16. https://doi.org/10.1080/15567036.2019.1604901 [28] L. Yang, W.F. Li, X. Li, X.K. Yan, H.J. Zhang, Effect of the turbulent flow pattern on the interaction between dodecylamine and quartz, Appl. Surf. Sci. 507 (2020) 145012 [29] D.L. Li, H.N. Wang, C.W. Li, Y.N. Liang, X.K. Yan, H.J. Zhang, Determination and modulation of the typical interactions among dispersed phases relevant to flotation applications:A review, Adv. Colloid Interface Sci. 288 (2021) 102359 [30] D.L. Li, H.N. Wang, L. Yang, X.K. Yan, L.J. Wang, H.J. Zhang, Intensification effects of stirred fluid on liquid-solid, gas-liquid and gas-solid interactions in flotation:A review, Chem. Eng. Process.-Process. Intensif. 152 (2020) 107943 [31] X.M. Yuan, B.I. Palsson, K.S.E. Forssberg, Statistical interpretation of flotation kinetics for a complex sulphide ore, Miner. Eng. 9 (4) (1996) 429-442 [32] A.P. Chaves, A.S. Ruiz, Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings, Int. J. Coal Prep. Util. 29 (6) (2009) 289-297 [33] H.J. Zhang, J.T. Liu, Y.J. Cao, Y.T. Wang, Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride, Powder Technol. 246 (2013) 658-663 [34] A. Terzić, L. Pavlović, L. Miličić, Evaluation of lignite fly ash for utilization as component in construction materials, Int. J. Coal Prep. Util. 33 (4) (2013) 159-180 [35] L. Qin, X.J. Gao, Q.Y. Li, Influences of coal fly ash containing ammonium salts on properties of cement paste, J. Environ. Manage. 249 (2019) 109374 [36] Y.X. Yu, A. Li, Z.H. Xu, A.N. Zhou, Z. Li, N.N. Zhang, J.Z. Qu, X.N. Zhu, Q. Liu, New insights into the slime coating caused by montmorillonite in the flotation of coal, J. Clean. Prod. 242 (2020) 118540 [37] Y.X. Yu, G. Cheng, L.Q. Ma, G. Huang, L. Wu, H.X. Xu, Effect of agitation on the interaction of coal and kaolinite in flotation, Powder Technol. 313 (2017) 122-128 [38] J. Černý, Aliphatic c-h bond responses in the 900-700 cm-1 region of the FTIR spectra of coal tars, Fuel Sci. Technol. Int. 13 (6) (1995) 807-818 [39] H.N. Wang, H.Z. Zhu, J.B. Zhu, W. Xu, M.S. Li, Z.K. Fei, Flotation of coal in the presence of quartz and clay minerals, Int. J. Coal Prep. Util. (2018),1-11. https://doi.org/10.1080/19392699.2018.1487408 [40] H.N. Wang, W.Q. Yang, D.L. Li, C.Q. Zhang, X.K. Yan, L.J. Wang, H.J. Zhang, Enhancement of coal flotation using impact flow conditioning pulp, J. Clean. Prod. 267 (2020) 122124 [41] D.L. Li, C.Q. Zhang, X. Li, L. Yang, X.K. Yan, L.J. Wang, Q.X. Liu, H.J. Zhang, Experimental study on the preconditioning of fine coal particles surface modification using a new type flow mixer, Fuel 268 (2020) 117361 [42] N.T. Thanh Truc, C.H. Lee, B.K. Lee, S.R. Mallampati, Development of hydrophobicity and selective separation of hazardous chlorinated plastics by mild heat treatment after PAC coating and froth flotation, J. Hazard. Mater. 321 (2017) 193-202 [43] M. Li, Y.C. Xia, Y.F. Zhang, S.H. Ding, G.Q. Rong, Y.J. Cao, Y.W. Xing, X.H. Gui, Mechanism of shale oil as an effective collector for oxidized coal flotation:From bubble-particle attachment and detachment point of view, Fuel 255 (2019) 115885 [44] L.X. Wang, Z.H. Xu, J.H. Masliyah, Dissipation of film drainage resistance by hydrophobic surfaces in aqueous solutions, J. Phys. Chem. C 117 (17) (2013) 8799-8805 [45] K. Quast, Use of conditioning time to investigate the mechanisms of interactions of selected fatty acids on hematite. Part 1:Literature survey, Miner. Eng. 79 (2015) 295-300 [46] M. Safari, D. Deglon, An attachment-detachment kinetic model for the effect of energy input on flotation, Miner. Eng. 117 (2018) 8-13 [47] A. Dippenaar, The destabilization of froth by solids. II. The rate-determining step, Int. J. Miner. Process. 9 (1) (1982) 15-22 [48] S. Ata, Coalescence of bubbles covered by particles, Langmuir 24 (12) (2008) 6085-6091 [49] S. Park, K.W. Huang, R.H. Yoon, Predicting bubble coarsening in flotation froth:Effect of contact angle and particle size, Miner. Eng. 127 (2018) 256-264 [50] F. Hernáinz, M. Calero, Froth flotation:Kinetic models based on chemical analogy, Chem. Eng. Process.:Process. Intensif. 40 (3) (2001) 269-275 |