Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 284-291.DOI: 10.1016/j.cjche.2021.03.003
Previous Articles Next Articles
Mingxia Tian, Aili Wang, Hengbo Yin
Received:
2020-11-15
Revised:
2021-03-03
Online:
2022-06-18
Published:
2022-04-28
Contact:
Aili Wang,E-mail:alwang@ujs.edu.cn;Hengbo Yin,E-mail:yin@ujs.edu.cn
Supported by:
Mingxia Tian, Aili Wang, Hengbo Yin
通讯作者:
Aili Wang,E-mail:alwang@ujs.edu.cn;Hengbo Yin,E-mail:yin@ujs.edu.cn
基金资助:
Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291.
Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films[J]. 中国化学工程学报, 2022, 44(4): 284-291.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.03.003
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348) (1991) 56-58 [2] J. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32(5) (1999) 435-445 [3] M.S. Choi, A. Mirzaei, J.H. Bang, H.G. Na, C. Jin, S.S. Kim, H.W. Kim, Incorporation of Pt nanoparticles on the surface of TeO2-branched porous Si nanowire structures for enhanced room-temperature gas sensing, J. Nanosci. Nanotechnol. 19(10) (2019) 6647-6655 [4] Y. Zhao, L. Yang, C. Liu, Q. Zhang, Y. Chen, J. Yang, D. Li, Kink effects on thermal transport in silicon nanowires, Int. J. Heat Mass Tran. 137 (2019) 573-578 [5] B.C. Giordano, D.C. Ratchford, K.J. Johnson, P.E. Pehrsson, Silicon nanowire arrays for the preconcentration and separation oftrace explosives vapors, J. Chromatogr. A 1597 (2019) 54-62 [6] M.Z. Asadzadeh, A. Köck, M. Popov, S. Steinhauer, J. Spitaler, L. Romaner, Response modeling of single SnO2 nanowire gas sensors, Sensor Actuat. B-Chem. 295 (2019) 22-29 [7] L. Lian, D. Dong, H. Wang, G. He, Highly reliable copper nanowire electrode with enhanced transmittance and robustness for organic light emitting diodes, Org. Electron. 65 (2019) 70-76 [8] W. Na, J. Lee, J. Jun, W. Kim, Y.K. Kim, J. Jang, Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection, J. Ind. Eng. Chem. 69 (2019) 358-363 [9] Q. He, Z. Jin, X. Li, Y. Lin, J. Ji, X. Yang, Q. Meng, P. Dong, Y. Zhang, M. Xu, Controllable synthesis and characterization of AuPd nanowire networks with high electrocatalytic performance, J. Nanosci. Nanotechnol. 19(9) (2019) 5900-5905 [10] J.S. Riva, A.V. Juárez, S.E. Urreta, L.M. Yudi, Catalytic properties of Fe-Pd ferromagnetic nanowires at liquid/liquid interfaces, Electrochim. Acta 298 (2019) 379-388 [11] Y. Cai, X. Piao, X. Yao, E. Nie, Z. Zhang, Z. Sun, A facile method to prepare silver nanowire transparent conductive film for heaters, Mater. Lett. 249 (2019) 66-69 [12] C.-M. Lai, T.-L. Kao, H.-Y. Tuan, Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance, J. Power Sources 379 (2018) 261-269 [13] K. Hua, X. Li, R. Bao, D. Fang, M. Jiang, J. Yi, Z. Luo, Y. Shu, B. Sun, Electrochemical performance of silver vanadate/silver nanowire composite for lithium-ion batteries, Solid State Ionics 325 (2018) 133-140 [14] A.M. Stortini, S. Fabris, G. Saorin, E.V. Falzacappa, L.M. Moretto, P. Ugo, Plasma activation of copper nanowires arrays for electrocatalytic sensing of nitrate in food and water, Nanomaterials 9(2) (2019) 150 [15] C. Gao, S. Fan, S. Zhang, P. Zhang, Q. Wang, Enhancement of tribofilm formation from water lubricated PEEK composites by copper nanowires, Appl. Surf. Sci. 444 (2018) 364-376 [16] J. Huang, H. Wang, B. Liang, U.J. Etim, Y. Liu,, Y. Li, Z. Yan, Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor, Chem. Eng. J. 364 (2019) 28-36 [17] G. Sánchez-Sanhueza, S. Rebolledo, J. López, M. Encalada, H. Bello-Toledo, D. Rojas, C. Medinam, M.F. Melendrez, Synthesis of copper nanowires and their antimicrobial activity on strains isolated persistent endodontic infections, J. Nanosci. Nanotechnol. 18(7) (2018) 4507-4514 [18] D.V.R. Kumar, I. Kim, Z. Zhong, K. Kim, D. Lee, J. Moon, Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires:exploring the dual role of alkyl amines, Phys. Chem. Chem. Phys. 16(40) (2014) 22107-22115 [19] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304(5669) (2004) 422-426 [20] Y. Zheng, J. Sun, H. Ye, J. Zhang, H. Zhang, Crystallization behaviors and mechanical properties of carbon nanotube encapsulated copper nanowires, Comp. Mater. Sci. 143 (2018) 350-359 [21] D.V.R. Kumar, K. Woo, J. Moon, Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications, Nanoscale 7(41) (2015) 17195-17210 [22] A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23(41) (2011) 4798-4803 [23] A.R. Alian, Y. Ju, S.A. Meguid, Comprehensive atomistic modeling of copper nanowires-based surface connectors, Mater. Design 175 (2019) 107812 [24] S. Ding, Y.Tian, J. Jiu, K. Suganuma, Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates, RSC Adv. 8(4) (2018) 2109-2115 [25] Q. Lonne, J. Endrino, Z. Huang, UV treatment of flexible copper nanowire mesh films for transparent conductor applications, Nanoscale Res. Lett. 12(1) (2017) 577 [26] M.E.T. Molares, E.M. Höhberger, Ch. Schaeflein, R.H. Blick, R. Neumann, C. Trautmann, Electrical characterization of electrochemically grown single copper nanowires, Appl. Phys. Lett. 82(13) (2003) 2139-2141 [27] T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang, Electrochemical synthesis of copper nanowires, J. Phys. Condens. Matter. 14(3) (2002) 355-363 [28] N.J. Gerein, J.A. Haber, Effect of ac electrodeposition conditions on the growth of high aspect ratio copper nanowires in porous aluminum oxide templates, J. Phys. Chem. B 109(37) (2005) 17372-17385 [29] T. Gao, G.W. Meng, J. Zhang, Y.W. Wang, C.H. Liang, J. C. Fan, L.D. Zhang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Appl. Phys. A 73(2) (2001) 251-254 [30] H. Zhang, Y. Wang, X. Gao, Z. Gao, Y. Chen, High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose, Prog. Nat. Sci. 27(3) (2017) 311-315 [31] Y. Zhang, F.L.-Y. Lam, X. Hu, Z. Yan, P. Sheng, Fabrication of copper nanowire encapsulated in the pore channels of SBA-15 by metal organic chemical vapor deposition, J. Phys. Chem. C 111(34) (2007)12536-12541 [32] H. Choi, S.-H. Park, Seedless growth of free-standing copper nanowires by chemical vapor deposition, J. Am. Chem. Soc. 126(20) (2004) 6248-6249 [33] C. Kim,W. Gu, M. Briceno, I.M. Robertson, H. Choi,K. Kim, Copper nanowires with a five-twinned structure grown by chemical vapor deposition, Adv. Mater. 20(10) (2008) 1859-1863 [34] C. Mayousse, C. Celle, A. Carella, J.-P. Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS, Nano Res. 7(3) (2014) 315-324 [35] D. Tigan, S.P. Genlik, B. Imer, H.E. Unalan, Core/shell copper nanowire networks for transparent thin film heaters, Nanotechnol. 30 (2019) 325202 [36] Y. Shi, H. Li, L. Chen, X. Huang, Obtaining ultra-long copper nanowires via a hydrothermal process, Sci. Technol. Adv. Mat. 6(7) (2005) 761-765 [37] Y. Zhao, Y. Zhang, Y. Li, Z. He,Z. Yan, Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs), RSC Adv. 2(30) (2012) 11544-11551 [38] G.-Q. Ren, L. Wang, H.-J. Yu, Q.-Q. Liu, A.-G. Xiao, Q.-H. Tan, J.-H. Ding, Synthesis of copper nanowires in aqueous solution at ambient temperature, J. Mater. Sci. Eng. 27(2) (2009) 172-174 [39] F. Meng, S. Jin, The solution growth of copper nanowires and nanotubes is driven by screw dislocations, Nano Lett. 12(1) (2012) 234-239 [40] S. Ye, A.R. Rathmell, Y.-C. Ha, A.R. Wilson, B.J. Wiley, The role of cuprous oxide seeds in the one-pot and seeded syntheses of copper nanowires, Small 10(9) (2014) 1771-1778 [41] Y. Chang, M.L. Lye, H.C. Zeng, Large-scale synthesis of high-quality ultralong copper nanowires, Langmuir 21(9) (2005) 3746-3748 [42] Q.-Q. Fu, Y.-D. Li, H.-H. Li, L. Xu, Z.-H. Wang, S.-H. Yu, In situ seed-mediated high-yield synthesis of copper nanowires on large scale, Langmuir 35(12) (2019) 4364-4369 [43] A.R. Rathmell, S.M. Bergin, Y.-L. Hua, Z.-Y. Li, B.J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22(32) (2010) 3558-3563 [44] J. Zhang, X. Li, D. Liu, S. Wang, J. Yan, M. Lu, X. Xie, L. Huang, W. Huang, Stirring revealed new functions of ethylenediamine and hydrazine in the morphology control of copper nanowires, Nanoscale 11(24) (2019) 11902-11909 [45] L. Yang, W. Chen, Y. Chen, W. Liu, T. Lei, L. Li, M. Lin, J. Wu, Y. Cao, W. Li, Y. Li, Copper(II) and cadmium(II) complexes based on N,N-bis(3,5-dimethyl-2-hydroxybenzyl)-N-(2-pyridylmethyl) amine ligand:Syntheses, structures, magnetic, and luminescent properties, Z. Anorg. Allg. Chem. 638(11) (2012) 1833-1838 [46] P.F.P. Nascimento, E.L.B. Neto, J.E.S. Pereira, A.J.F. Silva, Cu2+ and Cd2+ adsorption mechanism by coconut husk powder with and without amine modification, J. Environ. Eng. 146(8) (2020) 04020076 [47] J.J. Recillas-Mota, M.J. Bernad-Bernad, J. Gracia-Mora, Histamine interaction with Zn2+ and Cu2+ porphyrins, Pharmazie 64(8) (2009) 521-524 [48] Y. Zhang, H. Wang, H. Jiang, X. Wang, Water induced protonation of amine-terminated micelles for direct syntheses of ZnO quantum dots and their cytotoxicity towards cancer, Nanoscale 4(11) (2012) 3530-3535 |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[4] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[5] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[6] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[7] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[8] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[9] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[10] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[11] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[12] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[13] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[14] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296. |
[15] | Shaoxiang Cai, Han Yan, Qiuyi Wang, He Han, Ru Li, Zhichao Lou. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 360-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||