Chinese Journal of Chemical Engineering ›› 2022, Vol. 49 ›› Issue (9): 21-33.DOI: 10.1016/j.cjche.2022.03.011
• Special Column: Membranes for Life Science • Previous Articles Next Articles
Wenjun Zhang1,2, Wenshu Ge1,2, Min Li1, Shuangqing Li1,2, Minqiang Jiang1,2, Xiujuan Zhang1,2, Gaohong He1,2
Received:
2021-09-30
Revised:
2022-03-02
Online:
2022-10-19
Contact:
Gaohong He,E-mail:hgaohong@dlut.edu.cn
Supported by:
Wenjun Zhang1,2, Wenshu Ge1,2, Min Li1, Shuangqing Li1,2, Minqiang Jiang1,2, Xiujuan Zhang1,2, Gaohong He1,2
通讯作者:
Gaohong He,E-mail:hgaohong@dlut.edu.cn
基金资助:
Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 21-33.
Wenjun Zhang, Wenshu Ge, Min Li, Shuangqing Li, Minqiang Jiang, Xiujuan Zhang, Gaohong He. Short review on liquid membrane technology and their applications in biochemical engineering[J]. 中国化学工程学报, 2022, 49(9): 21-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.03.011
[1] B.S. Priyanka, N.K. Rastogi, Encapsulation of β-amylase in water-oil-water enzyme emulsion liquid membrane (EELM) bioreactor for enzymatic conversion of starch to maltose, Prep. Biochem. Biotechnol. 50 (2) (2020) 172-180.https://pubmed.ncbi.nlm.nih.gov/31846387/ [2] Zhang W.J., Mao Q., Yu Y. D., Li M., Ge W.S., He G.H., Study on efficient separation of calcium and magnesium in concentrated brine by emulsion liquid membrane with bis(2-ethylhexyl) phosphate and dibenzo-18-crown-6 as dual carriers. Modern Chemical Industry, 41 (2021),135-139 [3] R. Bloch, A. Finkelstein, O. Kedem, D. Vofsi, Metal-ion seperations by dialysis through solvent membranes, Ind. Eng. Chem. Proc. Des. Dev. 6 (2) (1967) 231-237.Doi:10.1021/i260022a014 [4] L.N. Norman, Membrane separation process, US 3410794 A,1968. [5] T. Wongsawa, N. Traiwongsa, U. Pancharoen, K. Nootong, A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes, Hydrometallurgy 198 (2020) 105488.Doi:10.1016/j.hydromet.2020.105488 [6] T.R. Reddy, N.N. Meeravali, A.V.R. Reddy, Reverse micelle mediated bulk liquid membrane separation of platinum gold and silver from real samples, Sep. Sci. Technol. 48 (12) (2013) 1859-1866. Doi:10.1080/01496395.2013.763708 [7] N.F. Mohamed Noah, N. Othman, S. Bachok, N. Abdullah, Palladium extraction using emulsion liquid membrane process-stability study, Adv. Mater. Res. 1113 (2015) 376-381. Doi:10.4028/www.scientific.net/AMR.1113.376 [8] A. Dâas, O. Hamdaoui, Removal of non-steroidal anti-inflammatory drugs ibuprofen and ketoprofen from water by emulsion liquid membrane, Environ. Sci. Pollut. Res. Int. 21 (3) (2014) 2154-2164.https://pubmed.ncbi.nlm.nih.gov/24037298/ [9] D.D. Agreda, I. García-Díaz, F. López, F. Alguacil, Supported liquid membranes technologies in metals removal from liquid effluents, Revista De Met. 47 (2011) 146-168. Doi:10.3989/REVMETALMADRID.1062 [10] M.D. Granado-Castro, M.J. Casanueva-Marenco, M.D. Galindo-Riaño, H.E. Mai, M. Díaz-de-Alba, A separation and preconcentration process for metal speciation using a liquid membrane:a case study for iron speciation in seawater, Mar. Chem. 198 (2018) 56-63. Doi:10.1016/j.marchem.2017.11.009 [11] F. Falaki, F. Shemirani, M. Shamsipur, Surfactant-assisted transport of lead ion through a bulk liquid membrane containing dicyclohexyl-18-crown-6:efficient removal of lead from blood serum and sea water, J. Iran. Chem. Soc. 13 (7) (2016) 1257-1263. Doi:10.1007/s13738-016-0839-5 [12] T. Hoshino, Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane, Desalination 317 (2013) 11-16. Doi:10.1016/j.desal.2013.02.014 [13] X.T. Feng, S. Toufouki, Z.C. Li, Y.N. Li, S. Yao, A highly hyphenated preparative method with emulsion liquid membrane extraction-in situ magnetization-magnetic separation for bioactive constituents from typical medicinal plant, Sep. Purif. Technol. 275 (2021) 119249. Doi:10.1016/j.seppur.2021.119249 [14] A. Sawant, S. Kamath, H. Kg, G.P. Kulyadi, Solid-in-oil-in-water emulsion:an innovative paradigm to improve drug stability and biological activity, AAPS PharmSciTech 22 (5) (2021) 199.https://pubmed.ncbi.nlm.nih.gov/34212274/ [15] N. Sunsandee, P. Ramakul, N. Thamphiphit, U. Pancharoen, N. Leepipatpiboon, The synergistic effect of selective separation of (S)-amlodipine from pharmaceutical wastewaters via hollow fiber supported liquid membrane, Chem. Eng. J. 209 (2012) 201-214. Doi:10.1016/J.CEJ.2012.07.136 [16] S. Bhowal, B.S. Priyanka, N.K. Rastogi, Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane, Biotechnol. Prog. 30 (5) (2014) 1084-1092. Doi:10.1002/btpr.1941 [17] T. Pirom, N. Sunsandee, T. Wongsawa, P. Ramakul, U. Pancharoen, K. Nootong, The effect of temperature on mass transfer and thermodynamic parameters in the removal of amoxicillin via hollow fiber supported liquid membrane, Chem. Eng. J. 265 (2015) 75-83. Doi:10.1016/j.cej.2014.12.037 [18] D.J. McClements, C.E. Gumus, Natural emulsifiers-Biosurfactants, phospholipids, biopolymers, and colloidal particles:molecular and physicochemical basis of functional performance, Adv. Colloid Interface Sci. 234 (2016) 3-26.https://pubmed.ncbi.nlm.nih.gov/27181392/ [19] F. Garavand, S.H. Razavi, I. Cacciotti, Synchronized extraction and purification of L-lactic acid from fermentation broth by emulsion liquid membrane technique, J. Dispers. Sci. Technol. 39 (9) (2018) 1291-1299. Doi:10.1080/01932691.2017.1396225 [20] V. Pilařová, M. Sultani, K.S. Ask, L. Nováková, S. Pedersen-Bjergaard, A. Gjelstad, One-step extraction of polar drugs from plasma by parallel artificial liquid membrane extraction, J. Chromatogr. B 1043 (2017) 25-32. Doi:10.1016/j.jchromb.2016.09.019 [21] M.N. Zarandi, A. Soltani, Emulsion liquid membrane design in vitro for removal of lead from aqueous solution, Orient. J. Chem 34 (6) (2018) 2747-2754. Doi:10.13005/ojc/340609 [22] T. Zheng, S. Pilla, Encapsulating hydrophilic solution by PU-PMF double-component capsule based on water-in-oil-in-oil emulsion template, Macromol. Chem. Phys. 219 (4) (2018) 1700418. Doi:10.1002/macp.201700418 [23] M.A. Hussein, A.A. Mohammed, M.A. Atiya, Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment:an overview, Environ. Sci. Pollut. Res. 26 (36) (2019) 36184-36204. Doi:10.1007/s11356-019-06652-3 [24] C.X. Tang, Y.M. Chen, J.H. Luo, M.Y. Low, Z.Q. Shi, J.T. Tang, Z. Zhang, B.L. Peng, K.C. Tam, Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics, Cellulose 26 (13-14) (2019) 7753-7767. Doi:10.1007/s10570-019-02648-x [25] X.D. Wang, K.X. Yu, R. An, L.L. Han, Y.L. Zhang, L.Y. Shi, R. Ran, Self-assembling GO/modified HEC hybrid stabilized Pickering emulsions and template polymerization for biomedical hydrogels, Carbohydr. Polym. 207 (2019) 694-703.https://pubmed.ncbi.nlm.nih.gov/30600055/ [26] H.Q. Yan, X.Q. Chen, M.X. Feng, Z.F. Shi, W. Zhang, Y. Wang, C.R. Ke, Q. Lin, Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery, Colloids Surf. B Biointerfaces 177 (2019) 112-120.https://pubmed.ncbi.nlm.nih.gov/30716696/ [27] H. Jiang, L.D. Liu, Y.X. Li, S.W. Yin, T. Ngai, Inverse Pickering emulsion stabilized by binary particles with contrasting characteristics and functionality for interfacial biocatalysis, ACS Appl. Mater. Interfaces 12 (4) (2020) 4989-4997.https://pubmed.ncbi.nlm.nih.gov/31909591/ [28] Tai Z, Huang Y, Zhu Q, Wu W, Yi T, Chen Z, Lu Y, Utility of Pickering emulsions in improved oral drug delivery, Drug Discov. Today (2020) 2020Sep17;S1359-2020Sep17;S6446(20)30370-6.https://pubmed.ncbi.nlm.nih.gov/32949702/ [29] X.N. Tan, J. Han, M. Lee, The effect of curcumin delivery using peptide micelles to pancreatic beta cells under the hypoxia condition, J. Control. Release 213 (2015) e118-e119. Doi:10.1016/j.jconrel.2015.05.199 [30] Tashkhourian, M. A. J. Highly selective transport of Ag+ ion through a liquid membrane containing 2-mercaptobenzothiazole as a carrier. Bulletin of the Korean Chemical Society, 24 (2003) 489-493 [31] S.H. Chang, Vegetable oil as organic solvent for wastewater treatment in liquid membrane processes, Desalination Water Treat. 52 (1-3) (2014) 88-101. Doi:10.1080/19443994.2013.782829 [32] A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal:an overview on emulsion stabilization and destabilization, Chem. Eng. J. 171 (3) (2011) 870-882. Doi:10.1016/j.cej.2011.05.102 [33] N.D. Zaulkiflee, A.L. Ahmad, N.F. Che Lah, M.M.H. Shah Buddin, Removal of emerging contaminants by emulsion liquid membrane:perspective and challenges, Environ. Sci. Pollut. Res. 29 (9) (2022) 12997-13023. Doi:10.1007/s11356-021-16658-5 [34] F.J. Alguacil, M. Alonso, A.M. Sastre, Modelling of mass transfer in facilitated supported liquid membrane transport of copper(II) using MOC-55 TD in Iberfluid, J. Membr. Sci. 184 (1) (2001) 117-122. Doi:10.1016/S0376-7388(00)00614-1 [35] P. Izák, W. Ruth, Z.F. Fei, P.J. Dyson, U. Kragl, Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation, Chem. Eng. J. 139 (2) (2008) 318-321. Doi:10.1016/j.cej.2007.08.001 [36] M. Garmsiri, H.R. Mortaheb, Enhancing performance of hybrid liquid membrane process supported by porous anionic exchange membranes for removal of cadmium from wastewater, Chem. Eng. J. 264 (2015) 241-250. Doi:10.1016/j.cej.2014.11.061 [37] F. Tajabadi, M. Ghambarian, Carrier-mediated extraction:applications in extraction and microextraction methods, Talanta 206 (2020) 120145.https://pubmed.ncbi.nlm.nih.gov/31514894/ [38] Basudev Swain, H.-W. S. a. C. G. L. Extraction/Separations of cobalt by supported liquid membrane:A Review. Korean Chem. Eng. Res., 57 (2019) 313-320 [39] Mohagheghi, E.; Alemzadeh, I.; Vossoughi, M. Study and optimization of aAmino acid extraction by emulsion liquid membrane. Separation Science and Technology, 43 (2008) 3075-3096 [40] S.C. Lee, Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions, Chem. Eng. J. 79 (1) (2000) 61-67. Doi:10.1016/S1385-8947(00)00173-X [41] H. Sun, J. Yao, D. Li, Q. Li, B. Liu, S. Liu, H. Cong, S. van Agtmaal, C.H. Feng, Removal of phenols from coal gasification wastewater through polypropylene hollow fiber supported liquid membrane, Chem. Eng. Res. Des. 123 (2017) 277-283. Doi:10.1016/j.cherd.2017.05.009 [42] P. Praveen, K.C. Loh, Simultaneous extraction and biodegradation of phenol in a hollow fiber supported liquid membrane bioreactor, J. Membr. Sci. 430 (2013) 242-251. Doi:10.1016/j.memsci.2012.12.021 [43] G. Saik Su, N. Morad, N. Ismail, M. Rafatullah, Developments in supported liquid membranes for treatment of metal-bearing wastewater, Sep. Purif. Rev. 51 (1) (2022) 38-56. Doi:10.1080/15422119.2020.1828100 [44] B. Zhang, G. Gozzelino, G. Baldi, Membrane liquid loss of supported liquid membrane based on n-decanol, Colloids Surf. A Physicochem. Eng. Aspects 193 (1-3) (2001) 61-70. Doi:10.1016/S0927-7757(01)00688-4 [45] W.D. Zhang, C.H. Cui, Y.Q. Yang, Mass transfer of copper(II) in hollow fiber renewal liquid membrane with different carriers, Chin. J. Chem. Eng. 18 (2) (2010) 346-350. Doi:10.1016/S1004-9541(08)60363-8 [46] S.G. Bhavya, B.S. Priyanka, N.K. Rastogi, Reverse micelles-mediated transport of lipase in liquid emulsion membrane for downstream processing, Biotechnol. Prog. 28 (6) (2012) 1542-1550.https://pubmed.ncbi.nlm.nih.gov/23011754/ [47] A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for cadmium removal:studies on emulsion diameter and stability, Desalination 287 (2012) 30-34. Doi:10.1016/j.desal.2011.11.002 [48] Sirisansaneeyakul, S.; Chainoy, R.; Vanichsriratana, W.; Srinophakun, T.; Chisti, Y. Xylitol production by liquid emulsion membrane encapsulated yeast cells. Journal of Chemical Technology & Biotechnology, 84 (2009) 1218-1228 [49] M.S. Gasser, N.E. El-Hefny, J.A. Daoud, Extraction of Co(II) from aqueous solution using emulsion liquid membrane, J. Hazard. Mater. 151 (2-3) (2008) 610-615. Doi:10.1016/j.jhazmat.2007.06.032 [50] J.M. Benito, A. Cambiella, A. Lobo, G. Gutiérrez, J. Coca, C. Pazos, Formulation, characterization and treatment of metalworking oil-in-water emulsions, Clean Technol. Environ. Policy 12 (1) (2010) 31-41. Doi:10.1007/s10098-009-0219-2 [51] Pickering, S. U. CXCVI.-Emulsions. J. Chem. Soc., Trans., 91 (1907) 2001-2021 [52] R.T. Wu, A. Menner, A. Bismarck, Tough interconnected polymerized medium and high internal phase emulsions reinforced by silica particles, J. Polym. Sci. A Polym. Chem. 48 (9) (2010) 1979-1989. Doi:10.1002/pola.23965 [53] A.J. Wang, T. Paterson, R. Owen, C. Sherborne, J. Dugan, J.M. Li, F. Claeyssens, Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity, Mater. Sci. Eng. C 67 (2016) 51-58. Doi:10.1016/j.msec.2016.04.087 [54] Q.X. Gao, C.Y. Wang, H.X. Liu, C.H. Wang, X.X. Liu, Z. Tong, Suspension polymerization based on inverse Pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures, Polymer 50 (12) (2009) 2587-2594. Doi:10.1016/j.polymer.2009.03.049 [55] Y.T. Xu, T.X. Liu, C.H. Tang, Novel Pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin, Food Hydrocoll. 88 (2019) 21-30. Doi:10.1016/j.foodhyd.2018.09.031 [56] E. Perrin, H. Bizot, B. Cathala, I. Capron, Chitin nanocrystals for Pickering high internal phase emulsions, Biomacromolecules 15 (10) (2014) 3766-3771.https://pubmed.ncbi.nlm.nih.gov/25180643/ [57] Q.H. Chen, J. Zheng, Y.T. Xu, S.W. Yin, F. Liu, C.H. Tang, Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals, Food Hydrocoll. 75 (2018) 125-130. Doi:10.1016/j.foodhyd.2017.09.005 [58] T. Yang, J. Zheng, B.S. Zheng, F. Liu, S.J. Wang, C.H. Tang, High internal phase emulsions stabilized by starch nanocrystals, Food Hydrocoll. 82 (2018) 230-238. Doi:10.1016/j.foodhyd.2018.04.006 [59] C. Linke, S. Drusch, Pickering emulsions in foods-opportunities and limitations, Crit. Rev. Food Sci. Nutr. 58 (12) (2018) 1971-1985. Doi:10.1080/10408398.2017.1290578 [60] J.Q. Su, Q. Guo, S.F. Yang, H. Li, L.K. Mao, Y.X. Gao, F. Yuan, Electrostatic deposition of polysaccharide onto soft protein colloidal particles:enhanced rigidity and potential application as Pickering emulsifiers, Food Hydrocoll. 110 (2021) 106147. Doi:10.1016/j.foodhyd.2020.106147 [61] X.X. Lu, C. Li, Q.R. Huang, Combining in vitro digestion model with cell culture model:assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions, Int. J. Biol. Macromol. 139 (2019) 917-924.https://pubmed.ncbi.nlm.nih.gov/31401275/ [62] J. Frelichowska, M.A. Bolzinger, J.P. Valour, H. Mouaziz, J. Pelletier, Y. Chevalier, Pickering w/o emulsions:drug release and topical delivery, Int. J. Pharm. 368 (1-2) (2009) 7-15. Doi:10.1016/j.ijpharm.2008.09.057 [63] G. Llorens-Blanch, M. Badia-Fabregat, D. Lucas, S. Rodriguez-Mozaz, D. Barceló, T. Pennanen, G. Caminal, P. Blánquez, Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor, Environ. Sci.:Processes Impacts 17 (2) (2015) 429-440. Doi:10.1039/c4em00579a [64] J.L. Wang, S.Z. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater:a review, J. Environ. Manage. 182 (2016) 620-640.https://pubmed.ncbi.nlm.nih.gov/27552641/ [65] Y. Yamini, C.T. Reimann, A. Vatanara, J.A. Jönsson, Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier, J. Chromatogr. A 1124 (1-2) (2006) 57-67.https://pubmed.ncbi.nlm.nih.gov/16716341/ [66] S. Zorita, L. Mårtensson, L. Mathiasson, Hollow-fibre supported liquid membrane extraction for determination of fluoxetine and norfluoxetine concentration at ultra trace level in sewage samples, J. Sep. Sci. 30 (15) (2007) 2513-2521.https://pubmed.ncbi.nlm.nih.gov/17763523/ [67] Sagrista, E.; Larsson, E.; Ezoddin, M.; Hidalgo, M.; Salvado, V.; Jonsson, J. A. Determination of non-steroidal anti-inflammatory drugs in sewage sludge by direct hollow fiber supported liquid membrane extraction and liquid chromatography-mass spectrometry. J Chromatogr A, 1217 (2010), 6153-6158 [68] M. Hedayati, S.A. Razavi, S. Boroomand, S.K. Kia, The impact of pre-analytical variations on biochemical analytes stability:a systematic review, J Clin Lab Anal 34 (12) (2020) e23551.https://pubmed.ncbi.nlm.nih.gov/32869910/ [69] Gjelstad, A.; Rasmussen, K. E.; Parmer, M. P.; Pedersen-Bjergaard, S. Parallel artificial liquid membrane extraction:micro-scale liquid-liquid-liquid extraction in the 96-well format. Bioanalysis, 5 (2013), 1377-1385 [70] M. Roldán-Pijuán, S. Pedersen-Bjergaard, A. Gjelstad, Parallel artificial liquid membrane extraction of acidic drugs from human plasma, Anal. Bioanal. Chem. 407 (10) (2015) 2811-2819. Doi:10.1007/s00216-015-8505-9 [71] K.N. Olsen, K.S. Ask, S. Pedersen-Bjergaard, A. Gjelstad, Parallel artificial liquid membrane extraction of psychoactive analytes:a novel approach in therapeutic drug monitoring, Bioanalysis 10 (6) (2018) 385-395. Doi:10.4155/bio-2017-0250 [72] G.C. Sahoo, N.N. Dutta, Studies on emulsion liquid membrane extraction of cephalexin, J. Membr. Sci. 145 (1) (1998) 15-26. Doi:10.1016/S0376-7388(98)00027-1 [73] Z. Seifollahi, A. Rahbar-Kelishami, Diclofenac extraction from aqueous solution by an emulsion liquid membrane:parameter study and optimization using the response surface methodology, J. Mol. Liq. 231 (2017) 1-10. Doi:10.1016/j.molliq.2017.01.081 [74] Z. Seifollahi, A. Rahbar-Kelishami, Amoxicillin extraction from aqueous solution by emulsion liquid membranes using response surface methodology, Chem. Eng. Technol. 42 (1) (2019) 156-166. Doi:10.1002/ceat.201800089 [75] T.A. Razo-Lazcano, M. Stambouli, M.D.P. González-Muñoz, D. Pareau, M. Ávila-Rodríguez, Emulsion liquid membranes for recovery of ibuprofen from aqueous solutions, J. Chem. Technol. Biotechnol 89 (6) (2014) 890-898. Doi:10.1002/jctb.4329 [76] A.L. Ahmad, Z. Shafie, N.D. Zaulkiflee, W.Y. Pang, Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase, Membranes 9 (10) (2019) 133.https://pubmed.ncbi.nlm.nih.gov/31623108/ [77] B.A. Kikani, S. Pandey, S.P. Singh, Immobilization of the α-amylase of Bacillus amyloliquifaciens TSWK1-1 for the improved biocatalytic properties and solvent tolerance, Bioprocess Biosyst. Eng. 36 (5) (2013) 567-577. Doi:10.1007/s00449-012-0812-3 [78] B.S. Priyanka, N.K. Rastogi, Selective extraction of lipase and amylase from enzyme mixture by employing liquid emulsion membrane, Biotechnol. Prog. 34 (3) (2018) 721-729.https://pubmed.ncbi.nlm.nih.gov/29464895/ [79] J.Q. Shen, W.P. Yin, Y.X. Zhao, L.J. Yu, Extraction of alanine using emulsion liquid membranes featuring a cationic carrier, J. Membr. Sci. 120 (1) (1996) 45-53. Doi:10.1016/0376-7388(96)00158-5 [80] Ruey-ShinJuang, Y.-Y. Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science, 207 (2002), 241-252 [81] S.C. Lee, Extraction of succinic acid from simulated media by emulsion liquid membranes, J. Membr. Sci. 381 (1-2) (2011) 237-243. Doi:10.1016/j.memsci.2011.07.039 [82] E. Bayraktar, Response surface optimization of the separation of dl-tryptophan using an emulsion liquid membrane, Process. Biochem. 37 (2) (2001) 169-175. Doi:10.1016/S0032-9592(01)00192-3 [83] J. Frankenfeld, G. Fuller, C. Rhodes, Potential use of liquid membranes for emergency treatment of drug overdose, Drug Development Communications, 2(4-5) (1976) 405-419.https://www.semanticscholar.org/paper/12f1bbc4d99bfddd72213b272cead7400b00214d [84] https://www.semanticscholar.org/paper/12f1bbc4d99bfddd72213b272cead7400b00214d[84] W.J. Zhang, M. Stambouli, D. Pareau, Detoxifying emulsion for overdosed aspirin intoxication, Int. J. Pharm. 441 (1-2) (2013) 598-602.https://pubmed.ncbi.nlm.nih.gov/23124108/ [85] S. Frasca, P. Couvreur, M. Seiller, D. Pareau, B. Lacour, M. Stambouli, J.L. Grossiord, Paraquat detoxication with multiple emulsions, Int. J. Pharm. 380 (1-2) (2009) 142-146. Doi:10.1016/j.ijpharm.2009.07.016 [86] Hamoudeh, M.; Seiller, M.; Chauvierre, C.; Auchère, D.; Lacour, B.; Pareau, D.; Stambouli, M.; Grossiord, J. L. Formulation of stable detoxifying w/o/w reactive multiple emulsions:in vitro evaluation. Journal of Drug Delivery Science and Technology, 16 (2006), 223-228 [87] T.F. Bian, X.J. Zhang, G.H. He, Z.J. Duan, C.X. Dong, X.C. Li, N.N. Guo, Citric acid-loaded W1/O/W2 multiple emulsions efficiently remove colonic ammonia both in vitro and in vivo, J. Dispers. Sci. Technol. 38 (1) (2017) 1-7. Doi:10.1080/01932691.2015.1038750 [88] W.J. Asher, T.C. Vogler, K.C. Bovee, P.G. Holtrapple, R.W. Hamilton, Liquid membrane capsules for treatment of uremia, J. Dial. 1 (3) (1977) 261-284. Doi:10.3109/08860227709039148 [89] Y.Y. Shi, Y.M. Zhang, H.J. Tian, Y.F. Wang, Y. Shen, Q.Y. Zhu, F. Ding, Improved dialytic removal of protein-bound uremic toxins by intravenous lipid emulsion in chronic kidney disease rats, Nephrol. Dial. Transplant 34 (11) (2019) 1842-1852.https://pubmed.ncbi.nlm.nih.gov/31071223/ [90] R.V. Tikekar, Y.J. Pan, N. Nitin, Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion, Food Res. Int. 51 (1) (2013) 370-377. Doi:10.1016/j.foodres.2012.12.027 [91] J. Han, F.L. Chen, C.C. Gao, Y. Zhang, X.Z. Tang, Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum Arabic nanoparticles, Int. J. Biol. Macromol. 157 (2020) 202-211. Doi:10.1016/j.ijbiomac.2020.04.177 [92] B.R. Shah, Y. Li, W.P. Jin, Y.P. An, L. He, Z.S. Li, W. Xu, B. Li, Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation, Food Hydrocoll. 52 (2016) 369-377. Doi:10.1016/j.foodhyd.2015.07.015 [93] P.F. Lv, D. Wang, Y.L. Chen, S.X. Zhu, J.B. Zhang, L.K. Mao, Y.X. Gao, F. Yuan, Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan:Fabrication, characterization and encapsulation, Food Hydrocoll. 108 (2020) 105992. Doi:10.1016/j.foodhyd.2020.105992 [94] I. Dammak, R.V. Lourenço, P.J.D.A. Sobral, Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin:preparation and physicochemical characterization, J. Food Eng. 240 (2019) 9-20. Doi:10.1016/j.jfoodeng.2018.07.002 [95] Q. Mao, M. Li, S.J. Zhang, X.J. Zhang, G.H. He, W.J. Zhang, Chitosan-hydrophobic alginate nanocomposites stabilized pH-triggered Pickering emulsion for drug controlled-release, Int. J. Biol. Macromol. 162 (2020) 1888-1896. Doi:10.1016/j.ijbiomac.2020.08.092 [96] X.M. Li, X.H. Li, Z.Z. Wu, Y. Wang, J.S. Cheng, T. Wang, B. Zhang, Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene:protection effect and in vitro digestion study, Food Chem. 315 (2020) 126288. Doi:10.1016/j.foodchem.2020.126288 [97] A. Araiza-Calahorra, Y.Q. Wang, C. Boesch, Y.S. Zhao, A. Sarkar, Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin, Curr. Res. Food Sci. 3 (2020) 178-188. Doi:10.1016/j.crfs.2020.05.001 [98] Z.H. Wei, Y.J. Cheng, J.Y. Zhu, Q.R. Huang, Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin, Food Hydrocoll. 94 (2019) 561-573. Doi:10.1016/j.foodhyd.2019.04.008 [99] A. Marefati, M. Bertrand, M. Sjöö, P. Dejmek, M. Rayner, Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization, Food Hydrocoll. 63 (2017) 309-320. Doi:10.1016/j.foodhyd.2016.08.043 [100] P. Shao, H.Y. Zhang, B. Niu, W.P. Jin, Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols, Int. J. Biol. Macromol. 118 (2018) 2032-2039. Doi:10.1016/j.ijbiomac.2018.07.076 [101] A.M. Shi, X.Y. Feng, Q. Wang, B. Adhikari, Pickering and high internal phase Pickering emulsions stabilized by protein-based particles:a review of synthesis, application and prospective, Food Hydrocoll. 109 (2020) 106117. Doi:10.1016/j.foodhyd.2020.106117 [102] Z. Zhang, G. Sèbe, Y.L. Hou, J. Wang, J. Huang, G.F. Zhou, Grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization, J. Appl. Polym. Sci. 138 (48) (2021) 51458. Doi:10.1002/app.51458 [103] B. Jiao, A.M. Shi, Q. Wang, B.P. Binks, High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications, Angew. Chem. Int. Ed Engl. 57 (30) (2018) 9274-9278.https://pubmed.ncbi.nlm.nih.gov/29845713/ [104] C.K. Surjit Singh, H.P. Lim, B.T. Tey, E.S. Chan, Spray-dried alginate-coated Pickering emulsion stabilized by chitosan for improved oxidative stability and in vitro release profile, Carbohydr. Polym. 251 (2021) 117110. Doi:10.1016/j.carbpol.2020.117110 [105] Y.Q. Hu, S.W. Yin, J.H. Zhu, J.R. Qi, J. Guo, L.Y. Wu, C.H. Tang, X.Q. Yang, Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles, Food Hydrocoll. 61 (2016) 300-310. Doi:10.1016/j.foodhyd.2016.05.028 [106] Z.H. Wei, J.W. Cheng, Q.R. Huang, Food-grade Pickering emulsions stabilized by ovotransferrin fibrils, Food Hydrocoll. 94 (2019) 592-602. Doi:10.1016/j.foodhyd.2019.04.005 |
[1] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[2] | Shujuan Xiao, Xiaowen Huo, Shuxin Fan, Kui Zhao, Shouwu Yu, Xiaoyao Tan. Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 110-120. |
[3] | A. Yadollahi, M. Torab-Mostaedi, K. Saberyan, A. Charkhi, F. Zahakifar. Intensification of zirconium and hafnium separation through the hollow fiber renewal liquid membrane technique using synergistic mixture of TBP and Cyanex-272 as extractant [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1817-1827. |
[4] | Wei Zhang, Zhijun Xu, Xiaoning Yang. Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes [J]. Chin.J.Chem.Eng., 2019, 27(2): 286-292. |
[5] | Xiaoqiang Jia, Dayao Jin, Chen Li, Wenyu Lu. Characterization and analysis of petrochemical wastewater through particle size distribution, biodegradability, and chemical composition [J]. Chin.J.Chem.Eng., 2019, 27(2): 444-451. |
[6] | Canan Onac, Ahmet Kaya, Duygu Ataman, Nefise Ayhan Gunduz, H. Korkmaz Alpoguz. The removal of Cr(VI) through polymeric supported liquid membrane by using calix[4]arene as a carrier [J]. Chin.J.Chem.Eng., 2019, 27(1): 85-91. |
[7] | R. Donat, Ö. Durmaz, H. Cetisșli. The kinetic analysis of optimization and selective transportation of Cu(II) ions with TNOA as carrier by MDLM system [J]. , 2017, 25(4): 415-425. |
[8] | Xianzhu Huang, Jian Wu, Yudan Zhu, Yumeng Zhang, Xin Feng, Xiaohua Lu. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication:A review [J]. Chin.J.Chem.Eng., 2017, 25(11): 1552-1562. |
[9] | Norasikin Othman, Norul Fatiha Mohamed Noah, Lim Yin Shu, Zing-Yi Ooi, Norela Jusoh, Mariani Idroas, Masahiro Goto. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process [J]. , 2017, 25(1): 45-52. |
[10] | Tengteng Fan, Wenlong Xie, Xiaoyan Ji, Chang Liu, Xin Feng, Xiaohua Lu. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective[Choline] [Pro]/PEG200 mixtures [J]. Chin.J.Chem.Eng., 2016, 24(11): 1513-1521. |
[11] | Bahram Mokhtari, Kobra Pourabdollah. Emulsion liquid membrane for selective extraction of Bi(III) [J]. Chin.J.Chem.Eng., 2015, 23(4): 641-645. |
[12] | Zhongqi Ren, Xinyan Zhu, Wei Liu, Wei Sun, Weidong Zhang, Junteng Liu. Removal of Aniline from Wastewater Using Hollow Fiber Renewal Liquid Membrane [J]. , 2014, 22(11/12): 1187-1192. |
[13] | ZHENG Huidong, CHEN Jingjing, WANG Biyu, ZHAO Suying. Recovery of Copper Ions from Wastewater by Hollow Fiber Supported Emulsion Liquid Membrane [J]. Chin.J.Chem.Eng., 2013, 21(8): 827-834. |
[14] | Bahram Mokhtari, Kobra Pourabdollah. Nano-baskets of Calix[4]-1,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations [J]. Chin.J.Chem.Eng., 2013, 21(11): 1313-1318. |
[15] | PEI Liang, WANG Liming, GUO Wei, ZHAO Nan. Study on a Novel Disphase Supplying Supported Liquid Membrane for Transport Behavior of Divalent Nickel Ions [J]. Chin.J.Chem.Eng., 2012, 20(4): 633-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||