[1] K. Wang, L.T. Li, P. Xie, G.S. Luo, Liquid-liquid microflow reaction engineering, React. Chem. Eng. 2 (5) (2017) 611-627 [2] J. Song, Y.J. Cui, L. Sheng, Y.J. Wang, C.C. Du, J. Deng, G.S. Luo, Determination of nitration kinetics of p-nitrotoluene with a homogeneously continuous microflow, Chem. Eng. Sci. 247 (2022) 117041 [3] Z.F. Yan, J.X. Tian, K. Wang, K.D.P. Nigam, G.S. Luo, Microreaction processes for synthesis and utilization of epoxides:A review, Chem. Eng. Sci. 229 (2021) 116071 [4] G.S. Luo, L. Du, Y.J. Wang, K. Wang, Manipulation and control of structure and size of inorganic nanomaterials in microchemical systems, Chem. Eng. Technol. 42 (10) (2019) 1996-2008 [5] G.S. Luo, L. Du, Y.J. Wang, K. Wang, Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano- and micro-materials, Particuology 45 (2019) 1-19 [6] J.S. Sui, J.Y. Yan, D. Liu, K. Wang, G.S. Luo, Continuous synthesis of nanocrystals via flow chemistry technology, Small 16 (15) (2020) e1902828 [7] K. Wang, G.S. Luo, Microflow extraction:A review of recent development, Chem. Eng. Sci. 169 (2017) 18-33 [8] H.H. Jeong, Z. Chen, S. Yadavali, J.H. Xu, D. Issadore, D. Lee, Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions, Lab Chip 19 (4) (2019) 665-673 [9] C. Zheng, B.C. Zhao, K. Wang, G.S. Luo, Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique, AIChE J. 61 (12) (2015) 4358-4366 [10] J.S. Zhang, A.R. Teixeira, K.F. Jensen, Automated measurements of gas-liquid mass transfer in micropacked bed reactors, AIChE J. 64 (2) (2018) 564-570 [11] L. Sang, J.C. Tu, H. Cheng, G.S. Luo, J.S. Zhang, Hydrodynamics and mass transfer of gas-liquid flow in micropacked bed reactors with metal foam packing, AIChE J. 66 (2) (2020):e16803. https://doi.org/10.1002/aic.16803 [12] P.M.Y. Chung, M. Kawaji, The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels, Int. J. Multiph. Flow 30 (7-8) (2004) 735-761 [13] C. Duan, Z.W. Liu, C.Y. Zhu, Y.G. Ma, T.T. Fu, Distribution of gas-liquid two-phase flow in parallel microchannels with the splitting of the liquid feed, Chem. Eng. J. 398 (2020) 125630 [14] Y.C. Chen, L. Sheng, J. Deng, G.S. Luo, Geometric effect on gas-liquid bubbly flow in capillary-embedded T-junction microchannels, Ind. Eng. Chem. Res. 60 (12) (2021) 4735-4744 [15] L. Sheng, L. Ma, Y.C. Chen, J. Deng, G.S. Luo, A comprehensive study of droplet formation in a capillary embedded step T-junction:From squeezing to jetting, Chem. Eng. J. 427 (2022) 132067 [16] Y.R. Yin, C.Y. Zhu, R.W. Guo, T.T. Fu, Y.G. Ma, Gas-liquid two-phase flow in a square microchannel with chemical mass transfer:Flow pattern, void fraction and frictional pressure drop, Int. J. Heat Mass Transf. 127 (2018) 484-496 [17] A. Leclerc, M. Alamé, D. Schweich, P. Pouteau, C. Delattre, C. de Bellefon, Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor, Lab a Chip 8 (5) (2008) 814 [18] T. Yasukawa, W. Ninomiya, K. Ooyachi, N. Aoki, K. Mae, Enhanced production of ethyl pyruvate using gas-liquid slug flow in microchannel, Chem. Eng. J. 167 (2-3) (2011) 527-530 [19] M.Y. Pan, Z. Qian, L. Shao, M. Arowo, J.F. Chen, J.X. Wang, Absorption of carbon dioxide into N-methyldiethanolamine in a high-throughput microchannel reactor, Sep. Purif. Technol. 125 (2014) 52-58 [20] J. Deng, J.S. Zhang, K. Wang, G.S. Luo, Microreaction technology for synthetic chemistry, Chin. J. Chem. 37 (2) (2019) 161-170 [21] Z.F. Yan, J.X. Tian, C.C. Du, J. Deng, G.S. Luo, Reaction kinetics determination based on microfluidic technology, Chin. J. Chem. Eng. 41 (2022) 49-72 [22] A. Armand, The resistance during the movement of a two-phase system in horizontal pipes, Izv Vses. Tepl Inst. 1 (1946) 16-23 [23] M.I. Ali, M. Sadatomi, M. Kawaji, Adiabatic two-phase flow in narrow channels between two flat plates, Can. J. Chem. Eng. 71 (5) (1993) 657-666 [24] R.Q. Xiong, J.N. Chung, An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels, Phys. Fluids 19 (3) (2007) 033301 [25] T. Fukano, A. Kariyasaki, Characteristics of gas-liquid two-phase flow in a capillary tube, Nucl. Eng. Des. 141 (1-2) (1993) 59-68 [26] K. Mishima, T. Hibiki, Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. Multiph. Flow 22 (4) (1996) 703-712 [27] C.W. Choi, D.I. Yu, M.H. Kim, Adiabatic two-phase flow in rectangular microchannels with different aspect ratios:Part II-bubble behaviors and pressure drop in single bubble, Int. J. Heat Mass Transf. 53 (23-24) (2010) 5242-5249 [28] H. Liu, C.O. Vandu, R. Krishna, Hydrodynamics of Taylor flow in vertical capillaries:Flow regimes, bubble rise velocity, liquid slug length, and pressure drop, Ind. Eng. Chem. Res. 44 (14) (2005) 4884-4897 [29] A. Kawahara, M. Sadatomi, K. Nei, H. Matsuo, Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel, Int. J. Heat Fluid Flow 30 (5) (2009) 831-841 [30] A. Kawahara, M. Sadatomi, K. Nei, H. Matsuo, Characteristics of two-phase flows in a rectangular microchannel with a T-junction type gas-liquid mixer, Heat Transf. Eng. 32 (7-8) (2011) 585-594 [31] Y.T. Lu, T.T. Fu, C.Y. Zhu, Y.G. Ma, H.Z. Li, Scaling of the bubble formation in a flow-focusing device:Role of the liquid viscosity, Chem. Eng. Sci. 105 (2014) 213-219 [32] C. Zhang, T.T. Fu, C.Y. Zhu, S.K. Jiang, Y.G. Ma, H.Z. Li, Dynamics of bubble formation in highly viscous liquids in a flow-focusing device, Chem. Eng. Sci. 172 (2017) 278-285 [33] L. Sheng, Y.C. Chen, J. Deng, G.S. Luo, High-frequency formation of bubble with short length in a capillary embedded step T-junction microdevice, AIChE J. 67 (11) (2021) e17376 [34] L. Sheng, Y. Chang, J. Deng, G.S. Luo, Taylor bubble generation rules in liquids with a higher viscosity in a T-junction microchannel, Ind. Eng. Chem. Res. 61 (6) (2022) 2623-2632 [35] H.H. Jeong, V.R. Yelleswarapu, S. Yadavali, D. Issadore, D. Lee, Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED), Lab Chip 15 (23) (2015) 4387-4392 [36] H.H. Jeong, S. Yadavali, D. Issadore, D. Lee, Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators, Lab Chip 17 (15) (2017) 2667-2673 [37] Y.J. Cui, Y.K. Li, K. Wang, J. Deng, G.S. Luo, High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels, J. Flow Chem. 10 (1) (2020) 271-282 [38] L. Sheng, Y.C. Chen, K. Wang, J. Deng, G.S. Luo, General rules of bubble formation in viscous liquids in a modified step T-junction microdevice, Chem. Eng. Sci. 239 (2021) 116621 [39] P. Garstecki, G.M. Whitesides, Flowing crystals:Nonequilibrium structure of foam, Phys. Rev. Lett. 97 (2) (2006) 024503 [40] J.P. Raven, P. Marmottant, Microfluidic crystals:Dynamic interplay between rearrangement waves and flow, Phys Rev Lett 102 (8) (2009) 084501 [41] A. van der Net, G.W. Delaney, W. Drenckhan, D. Weaire, S. Hutzler, Crystalline arrangements of microbubbles in monodisperse foams, Colloids Surf. A Physicochem. Eng. Aspects 309 (1-3) (2007) 117-124 |