[1] H. Zhang, Y.P. Bai, N. Zhu, J.H. Xu, Microfluidic reactor with immobilized enzyme-from construction to applications:A review, Chin. J. Chem. Eng. 30 (2021) 136-145.Doi:10.1016/j.cjche.2020.12.011 [2] Y.F. Xing, J.Y. Liu, X.J. Guo, H.P. Liu, W. Zeng, Y. Wang, C. Zhang, Y. Lu, D. He, S.H. Ma, Y.H. He, X.H. Xing, Engineering organoid microfluidic system for biomedical and health engineering:A review, Chin. J. Chem. Eng. 30 (2021) 244-254.Doi:10.1016/j.cjche.2020.11.013 [3] C.Q. Yao, Y.C. Zhao, H.Y. Ma, Y.Y. Liu, Q.K. Zhao, G.W. Chen, Two-phase flow and mass transfer in microchannels:A review from local mechanism to global models, Chem. Eng. Sci. 229 (2021) 116017.Doi:10.1016/j.ces.2020.116017 [4] S.T. Sanjay, W. Zhou, M.W. Dou, H. Tavakoli, L. Ma, F. Xu, X.J. Li, Recent advances of controlled drug delivery using microfluidic platforms, Adv. Drug Deliv. Rev. 128 (2018) 3-28 [5] W. Li, K. Liu, R. Simms, J. Greener, D. Jagadeesan, S. Pinto, A. Günther, E. Kumacheva, Microfluidic study of fast gas-liquid reactions, J. Am. Chem. Soc. 134 (6) (2012) 3127-3132.Doi:10.1021/ja2101278 [6] Y.Y. Li, X.M. Liu, Q. Huang, A.T. Ohta, T. Arai, Bubbles in microfluidics:An all-purpose tool for micromanipulation, Lab Chip 21 (6) (2021) 1016-1035.Doi:10.1039/d0lc01173h [7] M. Abolhasani, A. Günther, E. Kumacheva, Microfluidic studies of carbon dioxide, Angew. Chem. Int. Ed. 53 (31) (2014) 7992-8002.Doi:10.1002/anie.201403719 [8] S.L. Anna, Droplets and bubbles in microfluidic devices, Annu. Rev. Fluid Mech. 48 (2016) 285-309.Doi:10.1146/annurev-fluid-122414-034425 [9] P.G. Zhu, L.Q. Wang, Passive and active droplet generation with microfluidics:A review, Lab Chip 17 (1) (2017) 34-75.Doi:10.1039/c6lc01018k [10] M. Kawaji, P.M.Y. Chung, Adiabatic gas-liquid flow in microchannels, Microscale Thermophys. Eng. 8 (3) (2004) 239-257.Doi:10.1080/10893950490477518 [11] A. Kuzmin, M. Januszewski, D. Eskin, F. Mostowfi, J.J. Derksen, Three-dimensional binary-liquid lattice Boltzmann simulation of microchannels with rectangular cross sections, Chem. Eng. J. 178 (2011) 306-316.Doi:10.1016/j.cej.2011.10.010 [12] M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf, Multiphase monolith reactors:Chemical reaction engineering of segmented flow in microchannels, Chem. Eng. Sci. 60 (22) (2005) 5895-5916.Doi:10.1016/j.ces.2005.03.022 [13] Q. Li, P. Angeli, Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels, Chem. Eng. J. 328 (2017) 717-736.Doi:10.1016/j.cej.2017.07.037 [14] M. Köckinger, B. Wyler, C. Aellig, D.M. Roberge, C.A. Hone, C.O. Kappe, Optimization and scale-up of the continuous flow acetylation and nitration of 4-fluoro-2-methoxyaniline to prepare a key building block of osimertinib, Org. Process. Res. Dev. 24 (10) (2020) 2217-2227.Doi:10.1021/acs.oprd.0c00254 [15] L. Ducry, D.M. Roberge, Controlled autocatalytic nitration of phenol in a microreactor, Angew. Chem. Int. Ed. 44 (48) (2005) 7972-7975 [16] J. Albo, M.I. Qadir, M. Samperi, J.A. Fernandes, I. de Pedro, J. Dupont, Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO2 for an efficient photoreduction of CO2 to methanol, Chem. Eng. J. 404 (2021) 126643.Doi:10.1016/j.cej.2020.126643 [17] D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92 (5) (2004) 054503 [18] A.M. Leshansky, L.M. Pismen, Breakup of drops in a microfluidic T junction, Phys. Fluids 21 (2) (2009) 023303.Doi:10.1063/1.3078515 [19] T.T. Fu, Y.G. Ma, D. Funfschilling, H.Z. Li, Dynamics of bubble breakup in a microfluidic T-junction divergence, Chem. Eng. Sci. 66 (18) (2011) 4184-4195.Doi:10.1016/j.ces.2011.06.003 [20] Y.N. Wu, T.T. Fu, C.Y. Zhu, Y.T. Lu, Y.G. Ma, H.Z. Li, Asymmetrical breakup of bubbles at a microfluidic T-junction divergence:Feedback effect of bubble collision, Microfluid. Nanofluid. 13 (5) (2012) 723-733.Doi:10.1007/s10404-012-0991-x [21] M. Yamada, S. Doi, H. Maenaka, M. Yasuda, M. Seki, Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis, J. Colloid Interface Sci. 321 (2) (2008) 401-407 [22] Q. Zhang, H.C. Liu, S.N. Zhao, C.Q. Yao, G.W. Chen, Hydrodynamics and mass transfer characteristics of liquid-liquid slug flow in microchannels:The effects of temperature, fluid properties and channel size, Chem. Eng. J. 358 (2019) 794-805.Doi:10.1016/j.cej.2018.10.056 [23] C.L. Wang, M.C. Tian, J.Z. Zhang, G.M. Zhang, Experimental study on liquid-liquid two-phase flow patterns and plug hydrodynamics in a small channel, Exp. Therm. Fluid Sci. 129 (2021) 110455.Doi:10.1016/j.expthermflusci.2021.110455 [24] H.Y. Ma, Q.K. Zhao, C.Q. Yao, Y.C. Zhao, G.W. Chen, Effect of fluid viscosities on the liquid-liquid slug flow and pressure drop in a rectangular microreactor, Chem. Eng. Sci. 241 (2021) 116697.Doi:10.1016/j.ces.2021.116697 [25] A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction, Chem. Eng. J. 303 (2016) 547-554.Doi:10.1016/j.cej.2016.06.023 [26] C.Q. Yao, J. Zheng, Y.C. Zhao, Q. Zhang, G.W. Chen, Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel, Chem. Eng. J. 373 (2019) 437-445.Doi:10.1016/j.cej.2019.05.051 [27] Y.E. Yu, S. Khodaparast, H.A. Stone, Armoring confined bubbles in the flow of colloidal suspensions, Soft Matter 13 (15) (2017) 2857-2865 [28] M.J. Fuerstman, A. Lai, M.E. Thurlow, S.S. Shevkoplyas, H.A. Stone, G.M. Whitesides, The pressure drop along rectangular microchannels containing bubbles, Lab Chip 7 (11) (2007) 1479-1489 [29] R. Luo, L. Wang, Liquid flow pattern around Taylor bubbles in an etched rectangular microchannel, Chem. Eng. Res. Des. 90 (8) (2012) 998-1010.Doi:10.1016/j.cherd.2011.11.008 [30] A. Ładosz, P.R. von Rohr, Pressure drop of two-phase liquid-liquid slug flow in square microchannels, Chem. Eng. Sci. 191 (2018) 398-409.Doi:10.1016/j.ces.2018.06.057 [31] Y.J. Fei, C.Y. Zhu, T.T. Fu, X.Q. Gao, Y.G. Ma, The breakup dynamics of bubbles stabilized by nanoparticles in a microfluidic Y-junction, Chem. Eng. Sci. 245 (2021) 116867.Doi:10.1016/j.ces.2021.116867 [32] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6 (3) (2006) 437-446 [33] D.S. Liu, S.D. Wang, Hydrodynamics of Taylor flow in noncircular capillaries, Chem. Eng. Process. Process. Intensif. 47 (12) (2008) 2098-2106.Doi:10.1016/j.cep.2007.10.025 [34] Y. Han, N. Shikazono, Measurement of liquid film thickness in micro square channel, Int. J. Multiph. Flow 35 (10) (2009) 896-903.Doi:10.1016/j.ijmultiphaseflow.2009.06.006 [35] X.D. Chen, R. Zielinski, S.N. Ghadiali, Computational analysis of microbubble flows in bifurcating airways:Role of gravity, inertia, and surface tension, J. Biomech. Eng. 136 (10) (2014) 101007 [36] M.M. Zheng, Y.L. Ma, T.M. Jin, J.T. Wang, Effects of topological changes in microchannel geometries on the asymmetric breakup of a droplet, Microfluid. Nanofluid. 20 (7) (2016) 1-22.Doi:10.1007/s10404-016-1776-4 |