Chinese Journal of Chemical Engineering ›› 2022, Vol. 50 ›› Issue (10): 43-55.DOI: 10.1016/j.cjche.2022.09.008
• Review • Previous Articles Next Articles
Jia Ren, Feng Xin, Yongsheng Xu
Received:
2022-04-15
Revised:
2022-09-02
Online:
2023-01-04
Published:
2022-10-28
Contact:
Feng Xin,E-mail:xinf@tju.edu.cn
Jia Ren, Feng Xin, Yongsheng Xu
通讯作者:
Feng Xin,E-mail:xinf@tju.edu.cn
Jia Ren, Feng Xin, Yongsheng Xu. A review on direct synthesis of dimethoxymethane[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 43-55.
Jia Ren, Feng Xin, Yongsheng Xu. A review on direct synthesis of dimethoxymethane[J]. 中国化学工程学报, 2022, 50(10): 43-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.09.008
[1] H.Y. Liu, Z. Wang, J.X. Wang, X. He, Y.Y. Zheng, Q. Tang, J.F. Wang, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends, Energy 88 (2015) 793-800 [2] A. Peter, G. Stebens, J.F. Baumgärtner, E. Jacob, F.K. Mantei, M. Ouda, I. Krossing, Facile two-phase catalysis:From dimethoxymethane and monomeric formaldehyde towards oxymethylene ethers (OMEs), ChemCatChem 12 (9) (2020) 2416-2420 [3] A. Peter, S.M. Fehr, V. Dybbert, D. Himmel, I. Lindner, E. Jacob, M. Ouda, A. Schaadt, R.J. White, H. Scherer, I. Krossing, Towards a sustainable synthesis of oxymethylene dimethyl ether by homogeneous catalysis and uptake of molecular formaldehyde, Angew. Chem. Int. Ed. 57 (30) (2018) 9461-9464 [4] N. Schmitz, F. Homberg, J. Berje, J. Burger, H. Hasse, Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res. 54 (25) (2015) 6409-6417 [5] Hagen, G. P.; Spangler, M. J., Preparation of polyoxymethylene dimethyl ethers by acid-activated catalytic conversion of methanol with formaldehyde formed by oxy-dehydrogenation of dimethyl ether. U.S Pat., US6265528 B1 (2001) [6] G.D. Zhang, H. Liu, X.X. Xia, W.G. Zhang, J.H. Fang, Effects of dimethyl carbonate fuel additive on diesel engine performances, Proc. Inst. Mech. Eng. D J. Automob. Eng. 219 (7) (2005) 897-903 [7] J. Burger, M. Siegert, E. Ströfer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts, Fuel 89 (11) (2010) 3315-3319 [8] M. Härtl, P. Seidenspinner, E. Jacob, G. Wachtmeister, Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1, Fuel 153 (2015) 328-335 [9] A. Omari, B. Heuser, S. Pischinger, Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel 209 (2017) 232-237 [10] S. Damiri, H.R. Pouretedal, O. Bakhshi, An extreme vertices mixture design approach to the optimization of methylal production process using p-toluenesulfonic acid as catalyst, Chem. Eng. Res. Des. 112 (2016) 155-162 [11] Wang, J.; Zheng, Y.; Wang, S.; Wang, T.; Chen, S.; Zhu, C., Method for Producing Polyoxymethylene Dimethyl Ethers. U.S. Pat., 9266990 B2 (2016) [12] J.O. Weidert, J. Burger, M. Renner, S. Blagov, H. Hasse, Development of an integrated reaction-distillation process for the production of methylal, Ind. Eng. Chem. Res. 56 (2) (2017) 575-582 [13] X.M. Zhang, S.F. Zhang, C.G. Jian, Synthesis of methylal by catalytic distillation, Chem. Eng. Res. Des. 89 (6) (2011) 573-580 [14] A. Grünert, P. Losch, C. Ochoa-Hernández, W. Schmidt, F. Schüth, Gas-phase synthesis of oxymethylene ethers over Si-rich zeolites, Green Chem. 20 (20) (2018) 4719-4728 [15] J.O. Drunsel, M. Renner, H. Hasse, Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis, Chem. Eng. Res. Des. 90 (5) (2012) 696-703 [16] R. Peláez, P. Marín, S. Ordóñez, Synthesis of poly(oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins:A kinetic study, Chem. Eng. J. 396 (2020) 125305 [17] Lambiotte, G. New process for continuous production of methylal-by reaction of methanol and formaldehyde in presence of acid ion exchange resin, Swiss Pat., CH688041A5 (1997) [18] N. Schmitz, J. Burger, H. Hasse, Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res. 54 (50) (2015) 12553-12560 [19] D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde, Chem. Eng. Sci. 163 (2017) 92-104 [20] R.Y. Sun, I. Delidovich, R. Palkovits, Dimethoxymethane as a cleaner synthetic fuel:Synthetic methods, catalysts, and reaction mechanism, ACS Catal. 9 (2) (2019) 1298-1318 [21] K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, F. Dumeignil, One-pot 1,1-dimethoxymethane synthesis from methanol:A promising pathway over bifunctional catalysts, Catal. Sci. Technol. 6 (4) (2016) 958-970 [22] K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, O. Gardoll, M. Trentesaux, A.S. Mamede, G. Fang, J. Faye, N. Touati, H. Vezin, J.L. Dubois, J.L. Couturier, F. Dumeignil, Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1, 1-dimethoxymethane from methanol, Appl. Catal. B Environ. 145 (2014) 126-135 [23] Y.Z. Yuan, Y. Iwasawa, Performance and characterization of supported rhenium oxide catalysts for selective oxidation of methanol to methylal, J. Phys. Chem. B 106 (17) (2002) 4441-4449 [24] H.Q. Guo, D.B. Li, D. Jiang, W.H. Li, Y.H. Sun, The one-step oxidation of methanol to dimethoxymethane over nanostructure vanadium-based catalysts, Catal. Lett. 135 (1-2) (2010) 48-56 [25] H.Q. Guo, C.B. Chen, Y. Xiao, J.G. Wang, Z.H. Fan, D.B. Li, Y.H. Sun, Influence of preparation method on the surface and catalytic properties of sulfated vanadia-titania catalysts for partial oxidation of methanol, Fuel Process. Technol. 106 (2013) 77-83 [26] G. Busca, A.S. Elmi, P. Forzatti, Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts:a FT-IR and flow reactor study. J. Phys. Chem. C. 91(20) (1987) 5263-5269 [27] Y. Fu, J. Shen, Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity, Chem. Commun. 21 (2007) 2172-2174 [28] M.R. Jamei, M. Ranjbar, A. Eliassi, Sonochemical synthesis of vanadium complex nano-particles:A new precursor for preparation and evaluation of V2O5/Al2O3 nano-catalyst in selective oxidation of methanol to methylal, J. Iran. Chem. Soc. 14 (12) (2017) 2627-2635 [29] H.Q. Guo, D.B. Li, C.B. Chen, L.T. Jia, B. Hou, The one-step oxidation of methanol to dimethoxymethane over sulfated vanadia-titania catalysts:Influence of calcination temperature, RSC Adv. 5 (79) (2015) 64202-64207 [30] X.L. Lu, Z.F. Qin, M. Dong, H.Q. Zhu, G.F. Wang, Y.B. Zhao, W.B. Fan, J.G. Wang, Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts, Fuel 90 (4) (2011) 1335-1339 [31] E.S. Zhan, Y. Li, J.L. Liu, X.M. Huang, W.J. Shen, A VOx/meso-TiO2 catalyst for methanol oxidation to dimethoxymethane, Catal. Commun. 10 (15) (2009) 2051-2055 [32] J.X. Cai, Y.C. Fu, Q. Sun, M.H. Jia, J.Y. Shen, Effect of acidic promoters on the titania-nanotubes supported V2O5 catalysts for the selective oxidation of methanol to dimethoxymethane, Chin. J. Catal. 34 (11) (2013) 2110-2117 [33] H.R. Ma, H.X. Wang, B. Lu, J.X. Zhao, Q.H. Cai, VOx molecular level grafted g-C3N4 for highly selective oxidation of methanol to dimethoxymethane, Mol. Catal. 469 (2019) 48-56 [34] J. Gornay, X. Sécordel, G. Tesquet, B. de Ménorval, S. Cristol, P. Fongarland, M. Capron, L. Duhamel, E. Payen, J.L. Dubois, F. Dumeignil, Direct conversion of methanol into 1, 1-dimethoxymethane:Remarkably high productivity over an FeMo catalyst placed under unusual conditions, Green Chem. 12 (10) (2010) 1722 [35] M. Yuan, R.Y. Tang, X.Y. Sun, Z.M. Zhang, Y.Y. Tian, Y.Y. Qiao, Effects of the support on bifunctional one-step synthesis of methylal via methanol oxidation catalysed by Fe-Mo-based bifunctional catalysts, Sustain. Energy Fuels 5 (1) (2021) 246-260 [36] Y.Z. Yuan, H.C. Liu, H. Imoto, T. Shido, Y. Iwasawa, Performance and characterization of a new crystalline SbRe2O6 catalyst for selective oxidation of methanol to methylal, J. Catal. 195 (1) (2000) 51-61 [37] Y.Z. Yuan, T. Shido, Y. Iwasawa, The new catalytic property of supported rhenium oxides for selective oxidation of methanol to methylal, Chem. Commun. (15) (2000) 1421-1422 [38] H.C. Liu, E. Iglesia, Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures, J. Phys. Chem. B 109 (6) (2005) 2155-2163 [39] H.Y. Zhao, S. Bennici, J.Y. Shen, A. Auroux, Nature of surface sites of catalysts and reactivity in selective oxidation of methanol to dimethoxymethane, J. Catal. 272 (1) (2010) 176-189. [40] B.M. Weckhuysen, D.E. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catal. Today 78 (1-4) (2003) 25-46 [41] T. Wang, Y.L. Meng, L. Zeng, J.L. Gong, Selective oxidation of methanol to dimethoxymethane over V2O5/TiO2-Al2O3 catalysts, Sci. Bull. 60 (11) (2015) 1009-1018 [42] H. Zhao, S. Bennici, J. Shen, A. Auroux, The influence of the preparation method on the structural, acidic and redox properties of catalysts, Appl. Catal. A Gen. 356 (2) (2009) 121-128 [43] S.M. Rui, G.J. Liu, Q.Y. Wang, P. Wu, T.T. Qin, G.F. Zeng, X.Q. Chen, Z.Y. Liu, Y.H. Sun, Selective oxidation of methanol to dimethoxymethane at low temperatures through size-controlled VTiOx nanoparticles, ChemCatChem 9 (10) (2017) 1776-1781 [44] J.W. Liu, Q. Sun, Y.C. Fu, J.Y. Shen, Preparation and characterization of mesoporous VOx-TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane, J. Colloid Interface Sci. 335 (2) (2009) 216-221 [45] H. Zhao, S. Bennici, J. Shen, A. Auroux, Surface and catalytic properties of catalysts for the oxidation of methanol prepared by various methods, J. Mol. Catal. A Chem. 309 (1-2) (2009) 28-34 [46] H.Q. Guo, D.B. Li, D. Jiang, W.H. Li, Y.H. Sun, Characterization and performance of sulfated VOx-TiO2 catalysts in the one-step oxidation of methanol to dimethoxymethane, Catal. Commun. 11 (5) (2010) 396-400 [47] H. Zhao, S. Bennici, J. Shen, A. Auroux, Calorimetric study of the acidic character of catalysts used in methanol oxidation to dimethoxymethane, J. Therm. Anal. Calorim. 99 (3) (2010) 843-847 [48] H. Zhao, S. Bennici, J. Cai, J. Shen, A. Auroux, Effect of vanadia loading on the acidic, redox and catalytic properties of V2O5-TiO2 and catalysts for partial oxidation of methanol, Catal. Today 152 (1-4) (2010) 70-77 [49] H.Y. Zhao, S. Bennici, J.X. Cai, J.Y. Shen, A. Auroux, Influence of the metal oxide support on the surface and catalytic properties of sulfated vanadia catalysts for selective oxidation of methanol, J. Catal. 274 (2) (2010) 259-272 [50] H. Golinska-Mazwa, P. Decyk, M. Ziolek, Sb, V, Nb containing catalysts in low temperature oxidation of methanol-The effect of preparation method on activity and selectivity, J. Catal. 284 (1) (2011) 109-123 [51] H.Q. Guo, D.B. Li, C.B. Chen, Z.H. Fan, Y.H. Sun, One-step oxidation of methanol to dimethoxymethane on V2O5/CeO2 catalyst, Chin. J. CATALYSIS Chin. VERSION 33 (5) (2013) 813-818 [52] Y.B. Zhao, Z.F. Qin, G.F. Wang, M. Dong, L.C. Huang, Z.W. Wu, W.B. Fan, J.G. Wang, Catalytic performance of V2O5/ZrO2-Al2O3 for methanol oxidation, Fuel 104 (2013) 22-27 [53] Y.L. Meng, T. Wang, S. Chen, Y.J. Zhao, X.B. Ma, J.L. Gong, Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts, Appl. Catal. B Environ. 160-161 (2014) 161-172 [54] T.V. Andrushkevich, V.V. Kaichev, Y.A. Chesalov, A.A. Saraev, V.I. Buktiyarov, Selective oxidation of ethanol over vanadia-based catalysts:The influence of support material and reaction mechanism, Catal. Today 279 (2017) 95-106 [55] M. Tao, H.X. Wang, B. Lu, J.X. Zhao, Q.H. Cai, Highly selective oxidation of methanol to dimethoxymethane over SO42-/V2O5-ZrO2, New J. Chem. 41 (16) (2017) 8370-8376 [56] V.V. Kaichev, G.Y. Popova, Y.A. Chesalov, A.A. Saraev, T.V. Andrushkevich, V.I. Bukhtiyarov, Active component of supported vanadium catalysts in the selective oxidation of methanol, Kinetics Catal. 57 (1) (2016) 82-94 [57] J.W. Liu, Y.C. Fu, Q. Sun, J.Y. Shen, TiO2 nanotubes supported V2O5 for the selective oxidation of methanol to dimethoxymethane, Microporous Mesoporous Mater. 116 (1-3) (2008) 614-621 [58] S. Chen, S.P. Wang, X.B. Ma, J.L. Gong, Selective oxidation of methanol to dimethoxymethane over bifunctional VOx/TS-1 catalysts, Chem. Commun. 47 (33) (2011) 9345 [59] S. Chen, X.B. Ma, The role of oxygen species in the selective oxidation of methanol to dimethoxymethane over VOx/TS-1 catalyst, J. Ind. Eng. Chem. 45 (2017) 296-300 [60] Royer S, Sécordel X, Brandhorst M, Dumeignil F, Cristol S, Dujardin C, Capron M, Payen E, Dubois JL, Amorphous oxide as a novel efficient catalyst for direct selective oxidation of methanol to dimethoxymethane, Chem. Commun. (Camb) (7) (2008) 865-867 [61] Y.Y. Tian, M. Yuan, S. Li, R.Y. Tang, P.J. Zong, Y.Y. Qiao, Effects of reaction conditions on one-step synthesis of methylal via methanol oxidation catalyzed by Mo:Fe(2)/HZSM-5 catalyst, Int. J. Energy Res. 45 (5) (2021) 7487-7500 [62] J. Faye, M. Capron, A. Takahashi, S. Paul, B. Katryniok, T. Fujitani, F. Dumeignil, Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoOx/TiO2catalysts, Energy Sci. Eng. 3 (2) (2015) 115-125 [63] Secordel, X.; Tougerti, A.; Cristol, S.; Dujardin, C.; Blanck, D.; Morin, J. C.; Capron, M.; Mamede, A. S.; Paul, J. F.; Languille, M. A.; Bruckner, A.; Berrier, E., TiO2-anatase-supported oxorhenate catalysts prepared by oxidative redispersion of metal Re0 for methanol conversion to methylal:A multi-technique in situ/operando study. C. R. Chim. 17 (7-8) (2014)808-817 [64] H. Yu, K. Zeng, X.B. Fu, Y. Zhang, F. Peng, H.J. Wang, J. Yang, RuO2·xH2O supported on carbon nanotubes as a highly active catalyst for methanol oxidation, J. Phys. Chem. C 112 (31) (2008) 11875-11880 [65] M.L. Li, Y. Long, Z.Y. Deng, H. Zhang, X.G. Yang, G.Y. Wang, Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant, Catal. Commun. 68 (2015) 46-48 [66] N. Meng, T. Yamakawa, S. Shinoda, Methanol dehydrogenation in the liquid phase with Ru/active carbon catalyst, React. Kinetics Catal. Lett. 58 (2) (1996) 341-348 [67] L.C. Yang, T. Ishida, T. Yamakawa, S. Shinoda, Mechanistic study on dehydrogenation of methanol with[RuCl2(PR3)3]-type catalyst in homogeneous solutions, J. Mol. Catal. A Chem. 108 (2) (1996) 87-93 [68] H. Itagaki, S. Shinoda, Y. Saito, Liquid-phase dehydrogenation of methanol with homogeneous ruthenium complex catalysts, Bull. Chem. Soc. Jpn. 61 (7) (1988) 2291-2294 [69] T.A. Smith, R.P. Aplin, P.M. Maitlis, The ruthenium-catalysed conversion of methanol into methyl formate, J. Organomet. Chem. 291 (1) (1985) c13-c14 [70] T. Yamakawa, T. Ohnishi, S. Shinoda, Methanol dehydrogenation in the liquid phase with Cu-based solid catalysts, Catal. Lett. 23 (3-4) (1994) 395-401 [71] L.B. Wu, B.L. Li, C. Zhao, Direct synthesis of hydrogen and dimethoxylmethane from methanol on copper/silica catalysts with optimal Cu+/Cu0 sites, ChemCatChem 10 (5) (2018) 1140-1147 [72] A.T. To, T.J. Wilke, E. Nelson, C.P. Nash, A. Bartling, E.C. Wegener, K.A. Unocic, S.E. Habas, T.D. Foust, D.A. Ruddy, Dehydrogenative coupling of methanol for the gas-phase, one-step synthesis of dimethoxymethane over supported copper catalysts, ACS Sustainable Chem. Eng. 8 (32) (2020) 12151-12160 [73] N. Y.Usachev, I. M. Krukovskii, S. A. Kanaev, The nonoxidative methanol dehydrogenation to formaldehyde (A review), Petrol. Chem. 44 (6) (2004)379-394 [74] R.Y. Sun, C. Mebrahtu, J.P. Hofmann, D. Bongartz, J. Burre, C.H. Gierlich, P.J.C. Hausoul, A. Mitsos, R. Palkovits, Hydrogen-efficient non-oxidative transformation of methanol into dimethoxymethane over a tailored bifunctional Cu catalyst, Sustain. Energy Fuels 5 (1) (2021) 117-126 [75] H.H. Yang, Y.Y. Chen, X.J. Cui, G.F. Wang, Y.L. Cen, T.S. Deng, W.J. Yan, J. Gao, S.H. Zhu, U. Olsbye, J.G. Wang, W.B. Fan, A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation, Angew. Chem. Int. Ed. 57 (7) (2018) 1836-1840 [76] C. Mebrahtu, R.Y. Sun, C.H. Gierlich, R. Palkovits, Unraveling the structure-activity relationships of Cu/H-BEA bifunctional catalyst for selective synthesis of dimethoxymethane by non-oxidative dehydrogenation of methanol, Appl. Catal. B Environ. 287 (2021) 119964 [77] Q.D. Zhang, Y.S. Tan, G.B. Liu, J.F. Zhang, Y.Z. Han, Rhenium oxide-modified H3PW12O40/TiO2catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether, Green Chem. 16 (11) (2014) 4708-4715 [78] H.C. Liu, E. Iglesia, Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 keggin structures, J. Phys. Chem. B 107 (39) (2003) 10840-10847 [79] Lee, K. Y.; Itoh, K.; Hashimoto, M.; Mizuno, N.; Misono, M. Selective oxidation of cyclopentene and cyclohexene by hydrogen peroxide catalyzed by heteropolyacids. Stud. Surf. Sci. Catal. 82 (1994), 583-591 [80] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, J. Shamoto, N. Tsubaki, Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts, J. Nat. Gas Chem. 16 (3) (2007) 322-325 [81] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane, J. Mol. Catal. A Chem. 263 (1-2) (2007) 149-155 [82] Q.D. Zhang, Y.S. Tan, G.B. Liu, C.H. Yang, Y.Z. Han, Promotional effects of Sm2O3 on Mn-H4SiW12O40/SiO2 catalyst for dimethyl ether direct-oxidation to dimethoxymethane, J. Ind. Eng. Chem. 20 (4) (2014) 1869-1874 [83] Q.D. Zhang, Y.S. Tan, C.H. Yang, Y.Z. Han, Research on catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2 modified heteropolyacid catalysts, Catal. Commun. 9 (9) (2008) 1916-1919 [84] R.B. Duarte, S. Damyanova, D.C. de Oliveira, C.M.P. Marques, J.M.C. Bueno, Study of Sm2O3-doped CeO2-Al2O3-supported Pt catalysts for partial CH4 oxidation, Appl. Catal. A Gen. 399 (1-2) (2011) 134-145 [85] R.B. Duarte, M. Nachtegaal, J.M.C. Bueno, J.A. van Bokhoven, Understanding the effect of Sm2O3 and CeO2 promoters on the structure and activity of Rh/Al2O3 catalysts in methane steam reforming, J. Catal. 296 (2012) 86-98 [86] X.J. Gao, J.F. Zhang, F.E. Song, X.X. Wang, T. Zhang, Q.K. Jiang, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Biomass-based carbon-supported sulfate catalyst for efficient synthesis of dimethoxymethane from direct oxidation of dimethyl ether, J. Phys. Chem. Lett. 12 (49) (2021) 11795-11801 [87] W.F. Wang, X.J. Gao, Q. Yang, X.X. Wang, F.E. Song, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Vanadium oxide modified H-beta zeolite for the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation, Fuel 238 (2019) 289-297 [88] K. Thenert, K. Beydoun, J. Wiesenthal, W. Leitner, J. Klankermayer, Ruthenium-catalyzed synthesis of dialkoxymethane ethers utilizing carbon dioxide and molecular hydrogen, Angew. Chem. Int. Ed Engl. 55 (40) (2016) 12266-12269 [89] W.F. Wang, X.J. Gao, R. Feng, Q. Yang, T. Zhang, J.F. Zhang, Q.D. Zhang, Y.Z. Han, Y.S. Tan, Hierarchical H-MOR zeolite supported vanadium oxide for dimethyl ether direct oxidation, Catalysts 9 (7) (2019) 628 [90] K.Y. Leng, Y. Wang, C.M. Hou, C. Lancelot, C. Lamonier, A. Rives, Y.Y. Sun, Enhancement of catalytic performance in the benzylation of benzene with benzyl alcohol over hierarchical mordenite, J. Catal. 306 (2013) 100-108 [91] N.V. Vlasenko, Y.N. Kochkin, Direct single-stage conversion of synthesis gas to dimethoxymethane:Influence of the sequence of metal introduction into Cu, Pd-zeolite catalysts on the degree of Cu and Pd reduction and catalyst acidity, Russ. J. Appl. Chem. 76 (10) (2003) 1615-1619 [92] J.Tan, H. Xie, H. Cui, Y.Han, B.Zhong, Effect of V2O5/Sm2O3 modification on alumina performance for slurry phase dimethyl ether synthesis. J. Fuel. Chem. Technol. 33 (5) (2005)602-606 [93] Q.D. Zhang, W.F. Wang, Z.Z. Zhang, Y.Z. Han, Y.S. Tan, Low-temperature oxidation of dimethyl ether to polyoxymethylene dimethyl ethers over CNT-supported rhenium catalyst, Catalysts 6 (3) (2016) 43 [94] X.J. Gao, W.F. Wang, Y.Y. Gu, Z.Z. Zhang, J.F. Zhang, Q.D. Zhang, N. Tsubaki, Y.Z. Han, Y.S. Tan, Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts, ChemCatChem 10 (1) (2018) 273-279 [95] Q.D. Zhang, W.F. Wang, Z.Z. Zhang, J.F. Zhang, Y.Y. Bai, N. Tsubaki, Y.Z. Han, Y.S. Tan, Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether, Catal. Sci. Technol. 6 (19) (2016) 7193-7202 [96] Zhang J, Wang L, Wang G, et al. Hierarchical Sn-Beta Zeolite Catalyst for the Conversion of Sugars to Alkyl Lactates. ACS Sustain. Chem. Eng. 5 (4) (2017)3123-3131 [97] A.M. Bahmanpour, A. Hoadley, A. Tanksale, Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase, Green Chem. 17 (6) (2015) 3500-3507 [98] A.M. Bahmanpour, A. Hoadley, S.H. Mushrif, A. Tanksale, Hydrogenation of carbon monoxide into formaldehyde in liquid media, ACS Sustain. Chem. \& Eng. 4 (2016) 3970-3977 [99] M. Siebert, M. Seibicke, A.F. Siegle, S. Kräh, O. Trapp, Selective ruthenium-catalyzed transformation of carbon dioxide:An alternative approach toward formaldehyde, J Am Chem Soc 141 (1) (2019) 334-341 [100] B.G. Schieweck, J. Klankermayer, Tailor-made molecular cobalt catalyst system for the selective transformation of carbon dioxide to dialkoxymethane ethers, Angew Chem Int Ed Engl 56 (36) (2017) 10854-10857 [101] Ahmad W, Chan F L, Chaffee A L, et al. Dimethoxymethane Production via Catalytic Hydrogenation of Carbon Monoxide in Methanol Media. ACS. Sustain. Chem. Eng. 8(4) (2020)2081-2092 [102] W. Ahmad, F.L. Chan, A. Hoadley, H.T. Wang, A. Tanksale, Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts, Appl. Catal. B Environ. 269 (2020) 118765 [103] W. Ahmad, F.L. Chan, A. Shrotri, Y.N. Palai, H.T. Wang, A. Tanksale, Dimethoxymethane production via CO2 hydrogenation in methanol over novel Ru based hierarchical BEA, J. Energy Chem. 66 (2022) 181-189 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[5] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[6] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[7] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[8] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[9] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[10] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[11] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[12] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
[13] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
[14] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[15] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||