Chinese Journal of Chemical Engineering ›› 2022, Vol. 51 ›› Issue (11): 1-9.DOI: 10.1016/j.cjche.2021.08.029
Haonan Zhang1, Haotian Zhang1, Minli Tao1,2, Wenqin Zhang1,2
Received:
2021-06-25
Revised:
2021-08-30
Online:
2023-01-18
Published:
2022-11-18
Contact:
Minli Tao,E-mail:mltao@tju.edu.cn;Wenqin Zhang,E-mail:wqzhang@tju.edu.cn
Supported by:
Haonan Zhang1, Haotian Zhang1, Minli Tao1,2, Wenqin Zhang1,2
通讯作者:
Minli Tao,E-mail:mltao@tju.edu.cn;Wenqin Zhang,E-mail:wqzhang@tju.edu.cn
基金资助:
Haonan Zhang, Haotian Zhang, Minli Tao, Wenqin Zhang. Phenylboronic acid functionalized polyacrylonitrile fiber for efficient and green synthesis of bis(indolyl)methane derivatives[J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 1-9.
Haonan Zhang, Haotian Zhang, Minli Tao, Wenqin Zhang. Phenylboronic acid functionalized polyacrylonitrile fiber for efficient and green synthesis of bis(indolyl)methane derivatives[J]. 中国化学工程学报, 2022, 51(11): 1-9.
[1] T.R. Garbe, M. Kobayashi, N. Shimizu, N. Takesue, M. Ozawa, H. Yukawa, Indolyl carboxylic acids by condensation of indoles with α-keto acids, J. Nat. Prod. 63 (5) (2000) 596-598 [2] K.V. Sashidhara, A. Kumar, M. Kumar, A. Srivastava, A.J. Puri, Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives, Bioorg. Med. Chem. Lett. 20 (22) (2010) 6504-6507 [3] C.B. Hong, G.L. Firestone, L.F. Bjeldanes, Bcl-2 family-mediated apoptotic effects of 3, 3'-diindolylmethane (DIM) in human breast cancer cells, Biochem. Pharmacol. 63 (6) (2002) 1085-1097 [4] X.K. Ge, S. Yannai, G. Rennert, N. Gruener, F.A. Fares, 3, 3'-diindolylmethane induces apoptosis in human cancer cells, Biochem. Biophys. Res. Commun. 228 (1) (1996) 153-158 [5] S.B. Bharate, J.B. Bharate, S.I. Khan, B.L. Tekwani, M.R. Jacob, R. Mudududdla, R.R. Yadav, B. Singh, P.R. Sharma, S. Maity, B. Singh, I.A. Khan, R.A. Vishwakarma, Discovery of 3, 3'-diindolylmethanes as potent antileishmanial agents, Eur. J. Med. Chem. 63 (2013) 435-443 [6] F. Shirini, M.P. Lati, BiVO4-NPs:An efficient nano-catalyst for the synthesis of biscoumarins, bis(indolyl)methanes and 3, 4-dihydropyrimidin-2(1H)-ones (thiones) derivatives, J. Iran. Chem. Soc. 14 (1) (2017) 75-87 [7] D. Li, J. Wang, F. Chen, H. Jing, Fe3O4@SiO2 supported aza-crown ether complex cation ionic liquids:Preparation and applications in organic reactions, RSC Adv. 7 (2017) 4237-4242 [8] B.R. Nemallapudi, G.V. Zyryanov, B. Avula, M.R. Guda, S.R. Cirandur, C. Venkataramaiah, W. Rajendra, S. Gundala, Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents, Bioorg. Chem. 87 (2019) 465-473 [9] S.A. Sadaphal, K.F. Shelke, S.S. Sonar, M.S. Shingare, Ionic liquid promoted synthesis of bis(indolyl) methanes, Cent. Eur. J. Chem. 6 (4) (2008) 622-626 [10] D.Q. Liang, W.Z. Huang, L. Yuan, Y.H. Ma, J.M. Ma, D.M. Ning, An underrated cheap Lewis acid:Molecular bromine as a robust catalyst for bis(indolyl)methanes synthesis, Catal. Commun. 55 (2014) 11-14 [11] S.J. Ji, S.Y. Wang, Y. Zhang, T.P. Loh, Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions, Tetrahedron 60 (9) (2004) 2051-2055 [12] Y.J. Fu, Z.P. Lu, K. Fang, X.Y. He, H.J. Xu, Y. Hu, Enzymatic approach to cascade synthesis of bis(indolyl)methanes in pure water, RSC Adv. 10 (18) (2020) 10848-10853 [13] E. Fernández, A. Whiting, Synthesis and Application of Organoboron Compounds, Springer, Cham, Switzerland, 2015 [14] A. Coca, Boron reagents in synthesis, ACS Symp. Ser. 1236 (2016) 1-523 [15] R.M. Al-Zoubi, O. Marion, D.G. Hall, Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature, Angew. Chem. Int. Ed. 47 (15) (2008) 2876-2879 [16] H.C. Zheng, D.G. Hall, Mild and efficient boronic acid catalysis of Diels-Alder cycloadditions to 2-alkynoic acids, Tetrahedron Lett. 51 (27) (2010) 3561-3564 [17] T. Azuma, A. Murata, Y. Kobayashi, T. Inokuma, Y. Takemoto, A dual arylboronic acid-aminothiourea catalytic system for the asymmetric intramolecular hetero-Michael reaction of α, β-unsaturated carboxylic acids, Org. Lett. 16 (16) (2014) 4256-4259 [18] N. Gernigon, R.M. Al-Zoubi, D.G. Hall, Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids:Catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect, J. Org. Chem. 77 (19) (2012) 8386-8400 [19] T. Maki, K. Ishihara, H. Yamamoto, N-alkyl-4-boronopyridinium salts as thermally stable and reusable amide condensation catalysts, Org. Lett. 7 (22) (2005) 5043-5046 [20] K. Ishihara, S. Kondo, H. Yamamoto, 3, 5-bis(perfluorodecyl)phenylboronic acid as an easily recyclable direct amide condensation catalyst, Synlett 2001 (9) (2001) 1371-1374 [21] T. Maki, K. Ishihara, H. Yamamoto, New boron(III)-catalyzed amide and ester condensation reactions, Tetrahedron 63 (35) (2007) 8645-8657 [22] T. Maki, K. Ishihara, H. Yamamoto, N-alkyl-4-boronopyridinium halides versus boric acid as catalysts for the esterification of α-hydroxycarboxylic acids, Org. Lett. 7 (22) (2005) 5047-5050 [23] Y.J. Cao, Y.Y. Lai, X. Wang, Y.J. Li, W.J. Xiao, Michael additions in water of ketones to nitroolefins catalyzed by readily tunable and bifunctional pyrrolidine-thiourea organocatalysts, Tetrahedron Lett. 48 (1) (2007) 21-24 [24] A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, S.A. Padbury, Developments in flame retardant textiles -A review, Polym. Degrad. Stab. 88 (1) (2005) 3-12 [25] M. Yu, Z.Q. Wang, H.Z. Liu, S.Y. Xie, J.X. Wu, H.Q. Jiang, J.Y. Zhang, L.F. Li, J.Y. Li, Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized, ACS Appl. Mater. Interfaces 5 (9) (2013) 3697-3703 [26] Y. Shin, D.I. Yoo, K. Son, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules, J. Appl. Polym. Sci. 96 (6) (2005) 2005-2010 [27] J. Cao, P.Y. Li, G. Xu, M.L. Tao, N. Ma, W.Q. Zhang, Cooperative N-heterocyclic carbene Au and amino catalysis for continuous synthesis of secondary propargylamines in a fiber supported hydrophilic microenvironment, Chem. Eng. J. 349 (2018) 456-465 [28] J. Xiao, G. Xu, L. Wang, P.Y. Li, W.Q. Zhang, N. Ma, M.L. Tao, Polyacrylonitrile fiber with strongly acidic electrostatic microenvironment:Highly efficient and recyclable heterogeneous catalyst for the synthesis of heterocyclic compounds, J. Ind. Eng. Chem. 77 (2019) 65-75 [29] H. Zhu, G. Xu, H.M. Du, C.L. Zhang, N. Ma, W.Q. Zhang, Prolinamide functionalized polyacrylonitrile fiber with tunable linker length and surface microenvironment as efficient catalyst for Knoevenagel condensation and related multicomponent tandem reactions, J. Catal. 374 (2019) 217-229 [30] P.Y. Li, Y.Y. Liu, N. Ma, W.Q. Zhang, L-lysine functionalized polyacrylonitrile fiber:A green and efficient catalyst for Knoevenagel condensation in water, Catal. Lett. 148 (3) (2018) 813-823 [31] P.Y. Li, J.G. Du, Y.J. Xie, M.L. Tao, W.Q. Zhang, Highly efficient polyacrylonitrile fiber catalysts functionalized by aminopyridines for the synthesis of 3-substituted 2-aminothiophenes in water, ACS Sustainable Chem. Eng. 4 (3) (2016) 1139-1147 [32] J.G. Du, G. Xu, H.K. Lin, G.W. Wang, M.L. Tao, W.Q. Zhang, Highly efficient reduction of carbonyls, azides, and benzyl halides by NaBH4 in water catalyzed by PANF-immobilized quaternary ammonium salts, Green Chem. 18 (9) (2016) 2726-2735 [33] G. Xu, L. Wang, M.M. Li, M.L. Tao, W.Q. Zhang, Phosphorous acid functionalized polyacrylonitrile fibers with a polarity tunable surface micro-environment for one-pot C-C and C-N bond formation reactions, Green Chem. 19 (24) (2017) 5818-5830 [34] W.S. Xu, W.J. Zheng, F.J. Wang, Q.Z. Xiong, X.L. Shi, Y.K. Kalkhajeh, G. Xu, H.J. Gao, Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate, Chem. Eng. J. 403 (2021) 126349 [35] N. Piergies, E. Proniewicz, Y. Ozaki, Y. Kim, L.M. Proniewicz, Influence of substituent type and position on the adsorption mechanism of phenylboronic acids:Infrared, Raman, and surface-enhanced Raman spectroscopy studies, J. Phys. Chem. A 117 (27) (2013) 5693-5705 [36] S.P. Rwei, T.F. Way, W.Y. Chiang, S.Y. Pan, Effect of tacticity on the cyclization of polyacrylonitrile copolymers, Colloid Polym. Sci. 295 (5) (2017) 803-815 [37] J. Xiao, H.N. Zhang, A.C. Ejike, L. Wang, M.L. Tao, W.Q. Zhang, Phenanthroline functionalized polyacrylonitrile fiber with Pd(0) nanoparticles as a highly active catalyst for the Heck reaction, React. Funct. Polym. 161 (2021) 104843 [38] K.X. Zhang, C. Qu, Z.B. Liang, S. Gao, H. Zhang, B.J. Zhu, W. Meng, E.G. Fu, R.Q. Zou, Highly dispersed Co-B/N codoped carbon nanospheres on graphene for synergistic effects as bifunctional oxygen electrocatalysts, ACS Appl. Mater. Interfaces 10 (36) (2018) 30460-30469 [39] J.L. Zhu, C.Y. He, Y.Y. Li, S. Kang, P.K. Shen, One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction, J. Mater. Chem. A 1 (46) (2013) 14700 [40] H. Tabassum, A. Mahmood, Q. Wang, W. Xia, Z. Liang, B. Qiu, R. Zhao, R. Zou, Hierarchical cobalt hydroxide and B/N Co-doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors, Sci. Rep. 7 (2017) 43084 [41] X.Y. Yuan, H.M. Du, J.Y. Zhao, A.E. Chima, N. Ma, M.L. Tao, W.Q. Zhang, Tuning microenvironment of quaternary ammonium salt and tertiary amine bifunctionalized polyacrylonitrile fiber for cooperatively catalyzed aza-Michael addition, Catal. Lett. 151 (3) (2021) 832-843 [42] P.Y. Li, Y.Y. Liu, L. Wang, M.L. Tao, W.Q. Zhang, Modified polyacrylonitrile fiber as a renewable heterogeneous base catalyst for Henry reaction and Gewald reaction in water, J. Appl. Polym. Sci. 135 (11) (2018) 45992 |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[4] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[5] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[6] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[7] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[8] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[9] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[10] | Luyao Guo, Mengru Wang, Ronghe Lin, Jiaxin Ma, Shuanghao Zheng, Xiaoling Mou, Jun Zhang, Zhong-Shuai Wu, Yunjie Ding. Assembly of N- and P-functionalized carbon nanostructures derived from precursor-defined ternary copolymers for high-capacity lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 280-288. |
[11] | Lin-Bing Zou, Jue-Ying Gong, Xiao-Jie Ju, Zhuang Liu, Wei Wang, Rui Xie, Liang-Yin Chu. Smart membranes for biomedical applications [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 34-45. |
[12] | Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115. |
[13] | Siyue Ren, Xiao Feng. Emergy evaluation of aromatics production from methanol and naphtha [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 134-141. |
[14] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[15] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||