Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 101-123.DOI: 10.1016/j.cjche.2022.03.024
• Review • Previous Articles Next Articles
Wenjuan Yan1, Puhua Sun1, Chen Luo2, Xingfan Xia1, Zhifei Liu1, Yuming Zhao1, Shuxia Zhang1, Liang Sun1, Feng Du1
Received:
2021-12-16
Revised:
2022-03-03
Online:
2023-04-08
Published:
2023-01-28
Contact:
Wenjuan Yan,E-mail:wenjuanyan@upc.edu.cn
Supported by:
Wenjuan Yan1, Puhua Sun1, Chen Luo2, Xingfan Xia1, Zhifei Liu1, Yuming Zhao1, Shuxia Zhang1, Liang Sun1, Feng Du1
通讯作者:
Wenjuan Yan,E-mail:wenjuanyan@upc.edu.cn
基金资助:
Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123.
Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism[J]. 中国化学工程学报, 2023, 53(1): 101-123.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.03.024
[1] H. Xu, H.Y. Shang, C. Wang, Y.K. Du, Low-dimensional metallic nanomaterials for advanced electrocatalysis, Adv. Funct. Mater. 30 (50) (2020) 2006317 [2] Z. Li, X.L. Xu, X.H. Lu, C.C. He, J.J. Huang, W. Sun, L. Tian, Synergistic coupling of FeNi3 alloy with graphene carbon dots for advanced oxygen evolution reaction electrocatalysis, J. Colloid Interface Sci. 615 (2022) 273–281 [3] J. Tzadikov, N.R. Levy, L. Abisdris, R. Cohen, M. Weitman, I. Kaminker, A. Goldbourt, Y. Ein-Eli, M. Shalom, Bottom-up synthesis of advanced carbonaceous anode materials containing sulfur for Na-ion batteries, Adv. Funct. Mater. 30 (19) (2020) 2000592 [4] S.J. Yi, H. Jiang, X.J. Bao, S.Q. Zou, J.J. Liao, Z.J. Zhang, Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism, J. Electroanal. Chem. 848 (2019) 113279 [5] C. Biz, M. Fianchini, J. Gracia, Catalysis meets spintronics; spin potentials associated with open-shell orbital configurations enhance the activity of Pt3Co nanostructures for oxygen reduction: A density functional theory study, ACS Appl. Nano Mater. 3 (1) (2020) 506–515 [6] M. Lokanathan, I.M. Patil, P. Mukherjee, A. Swami, B. Kakade, Molten-salt synthesis of Pt3Co binary alloy nanoplates as excellent and durable electrocatalysts toward oxygen electroreduction, ACS Sustainable Chem. Eng. 8 (2) (2020) 986–993 [7] H. Xu, Y.T. Zhao, Q. Wang, G.Y. He, H.Q. Chen, Supports promote single-atom catalysts toward advanced electrocatalysis, Coord. Chem. Rev. 451 (2022) 214261 [8] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (46) (2004) 17886–17892 [9] N. Mohan, L. Cindrella, Template-free synthesis of Pt-MOx (M = Ni, Co & Ce) supported on cubic zeolite-A and their catalytic role in methanol oxidation and oxygen reduction reactions characterized by the hydrodynamic study, Int. J. Hydrog. Energy 42 (34) (2017) 21719–21731 [10] M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction, Chem. Rev. 116 (6) (2016) 3594–3657 [11] C. Zalitis, A. Kucernak, X.Q. Lin, J. Sharman, Electrochemical measurement of intrinsic oxygen reduction reaction activity at high current densities as a function of particle size for Pt4–xCox/C (x = 0, 1, 3) catalysts, ACS Catal. 10 (7) (2020) 4361–4376 [12] J.H. Lu, L.B. Yang, W. Guo, S.T. Xiao, L.Y. Wang, Y.G. OuYang, P. Gao, The mechanism of Co oxyhydroxide nano-Islands deposited on a Pt surface to promote the oxygen reduction reaction at the cathode of fuel cells, RSC Adv. 10 (73) (2020) 44719–44727. [13] Z. Li, X. Wang, Z. Zhang, J. Hu, Z. Liu, D. Sun, and Y. Tang, Concave PtCo nanooctahedra with high-energy {110} facets for the oxygen reduction reaction. Crystengcomm 22 (2020) 1541-1546 [14] Z. Li, W.H. Niu, Z.Z. Yang, N. Zaman, W. Samarakoon, M.Y. Wang, A. Kara, M. Lucero, M.V. Vyas, H. Cao, H. Zhou, G.E. Sterbinsky, Z.X. Feng, Y.G. Du, Y. Yang, Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries, Energy Environ. Sci. 13 (3) (2020) 884–895 [15] J. Wang, J. Zhang, G.G. Liu, C.Y. Ling, B. Chen, J.T. Huang, X.Z. Liu, B. Li, A.L. Wang, Z.N. Hu, M. Zhou, Y. Chen, H.F. Cheng, J.W. Liu, Z.X. Fan, N.L. Yang, C.L. Tan, L. Gu, J.L. Wang, H. Zhang, Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction, Nano Res. 13 (7) (2020) 1970–1975 [16] V.S. Men’shchikov, V.E. Guterman, S.V. Belenov, O.A. Spiridonova, D.V. Rezvan, De-alloyed PtCu/C catalysts of methanol electrooxidation, Russ. J. Electrochem. 56 (10) (2020) 850–858 [17] S.V. Belenov, V.S. Men’shchikov, A.Y. Nikulin, N.M. Novikovskii, PtCu/C materials doped with different amounts of gold as the catalysts of oxygen electroreduction and methanol electrooxidation, Russ. J. Electrochem. 56 (8) (2020) 660–668 [18] X.Y. Huang, L.X. You, X.F. Zhang, J.J. Feng, L. Zhang, A.J. Wang, -proline assisted solvothermal preparation of Cu-rich rhombic dodecahedral PtCu nanoframes as advanced electrocatalysts for oxygen reduction and hydrogen evolution reactions, Electrochimica Acta 299 (2019) 89–97 [19] T. Kwon, M. Jun, H.Y. Kim, A. Oh, J. Park, H. Baik, S.H. Joo, K. Lee, Vertex-reinforced PtCuCo ternary nanoframes as efficient and stable electrocatalysts for the oxygen reduction reaction and the methanol oxidation reaction, Adv. Funct. Mater. 28 (13) (2018) 1706440 [20] M. Oezaslan, P. Strasser, Activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell, J. Power Sources 196 (12) (2011) 5240–5249 [21] Y. Kim, A.A. Jeffery, J. Min, N. Jung, Modulating catalytic activity and durability of PtFe alloy catalysts for oxygen reduction reaction through controlled carbon shell formation, Nanomaterials (Basel) 9 (10) (2019) 1491 [22] D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.H. Chung, H. Kim, B.S. Mun, K.S. Lee, N.S. Lee, S.J. Yoo, D.H. Lim, K. Kang, Y.E. Sung, T. Hyeon, Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction, J. Am. Chem. Soc. 137 (49) (2015) 15478–15485 [23] B. Arumugam, B.A. Kakade, T. Tamaki, M. Arao, H. Imai, T. Yamaguchi, Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst, RSC Adv. 4 (52) (2014) 27510 [24] D. Schmidt, G.G. Asara, F. Baletto, A kinetic Monte Carlo-blueprint for oxygen reduction on oxide-supported PtNi nanoalloys, J. Chem. Phys. 152 (3) (2020) 034107 [25] I. Khalakhan, L. Vega, M. Vorokhta, T. Skála, F. Viñes, Y.V. Yakovlev, K.M. Neyman, I. Matolínová, Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments, Appl. Catal. B Environ. 264 (2020) 118476 [26] X.J. Jia, S. Liu, L. Huang, P. Devaraji, L. Walekar, W. Chen, X.Y. Li, S.H. Liu, L.Q. Mao, PtNixCoy concave nanocubes: Synthesis and application in photocatalytic hydrogen generation, Catal. Sci. Technol. 10 (1) (2020) 113–123 [27] Y.J. Sun, Y.J. Li, Y.N. Qin, L. Wang, S.J. Guo, Interfacial engineering in PtNiCo/NiCoS nanowires for enhanced electrocatalysis and electroanalysis, Chemistry 26 (18) (2020) 4032–4038 [28] S. Hanif, X. Shi, N. Iqbal, T. Noor, R. Anwar, A.M. Kannan, ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell, Appl. Catal. B Environ. 258 (2019) 117947 [29] M. Lokanathan, I.M. Patil, B. Kakade, Trimetallic PtNiCo nanoflowers as efficient electrocatalysts towards oxygen reduction reaction, Int. J. Hydrog. Energy 43 (18) (2018) 8983–8990 [30] R. Sriphathoorat, K. Wang, S.P. Luo, M. Tang, H.Y. Du, X.W. Du, P.K. Shen, Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation, J. Mater. Chem. A 4 (46) (2016) 18015–18021 [31] B.N. Wanjala, R. Loukrakpam, J. Luo, P.N. Njoki, D. Mott, C.J. Zhong, M.H. Shao, L. Protsailo, T. Kawamura, Thermal treatment of PtNiCo electrocatalysts: Effects of nanoscale strain and structure on the activity and stability for the oxygen reduction reaction, J. Phys. Chem. C 114 (41) (2010) 17580–17590 [32] N. Travitsky, T. Ripenbein, D. Golodnitsky, Y. Rosenberg, L. Burshtein, E. Peled, Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells, J. Power Sources 161 (2) (2006) 782–789 [33] Z. Zhao, H.X. Xu, Z.Y. Feng, Y.Q. Zhang, M.S. Cui, D.P. Cao, D.J. Cheng, Design of high-performance co-based alloy nanocatalysts for the oxygen reduction reaction, Chem. – A Eur. J. 26 (18) (2020) 4128–4135 [34] S. Kobayashi, M. Wakisaka, D.A. Tryk, A. Iiyama, H. Uchida, Effect of alloy composition and crystal face of Pt-skin/Pt100-xCox [(111), (100), and (110)] single crystal electrodes on the oxygen reduction reaction activity, J. Phys. Chem. C 121 (21) (2017) 11234–11240 [35] T. Tan, J. Han, J. Deng, Y.M. Kang, M. Yahia, W. Wang, Dealloying co-rich PtPdCo nanoparticles on nitrogen modified carbon as advanced electrocatalyst for ethylene glycol oxidation, J. Electrochem. Soc. 167 (4) (2020) 044518 [36] U. Guevara, R. López, J. Blanco, J. Núñez, Theoretical study of electronic properties and spin density in Pt-Co alloys, Mater. Res. Express 6 (9) (2019) 096514 [37] K. Sato, A. Ito, H. Tomonaga, H. Kanematsu, Y. Wada, H. Asakura, S. Hosokawa, T. Tanaka, T. Toriyama, T. Yamamoto, S. Matsumura, K. Nagaoka, Pt–co alloy nanoparticles on a γ-Al2O3 support: The synergistic effect between isolated electron-rich Pt and co for automotive exhaust purification, ChemPlusChem 84 (5) (2019) 442 [38] W.S. Jung, W.H. Lee, H.S. Oh, B.N. Popov, Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction, J. Mater. Chem. A 8 (38) (2020) 19833–19842 [39] F.L. Jiang, F.J. Zhu, F. Yang, X.H. Yan, A.M. Wu, L.X. Luo, X.L. Li, J.L. Zhang, Comparative investigation on the activity degradation mechanism of Pt/C and PtCo/C electrocatalysts in PEMFCs during the accelerate degradation process characterized by an in situ X-ray absorption fine structure, ACS Catal. 10 (1) (2020) 604–612 [40] Z.Z. Liang, H.Q. Zheng, R. Cao, Recent advances in Co-based electrocatalysts for the oxygen reduction reaction, Sustain. Energy Fuels 4 (8) (2020) 3848–3870 [41] M. Rethinasabapathy, S.M. Kang, Y. Haldorai, N. Jonna, M. Jankiraman, G.W. Lee, S.C. Jang, B. Natesan, C. Roh, Y.S. Huh, Quaternary PtRuFeCo nanoparticles supported N-doped graphene as an efficient bifunctional electrocatalyst for low-temperature fuel cells, J. Ind. Eng. Chem. 69 (2019) 285–294 [42] B. Lim, M. Jiang, P.H. Camargo, E.C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science 324 (5932) (2009) 1302–1305 [43] H. Ataee-Esfahani, L. Wang, Y. Yamauchi, Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell, Chem. Commun. (Camb) 46 (21) (2010) 3684–3686 [44] Q.M. Shen, L.P. Jiang, H. Zhang, Q.H. Min, W.H. Hou, J.J. Zhu, Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications, J. Phys. Chem. C 112 (42) (2008) 16385–16392 [45] L.Y. Jiang, X.Y. Huang, A.J. Wang, X.S. Li, J.H. Yuan, J.J. Feng, Facile solvothermal synthesis of Pt76Co24 nanomyriapods for efficient electrocatalysis, J. Mater. Chem. A 5 (21) (2017) 10554–10560 [46] J. Kim, W.H. Doh, Y. Kim, K.J. Kim, J.Y. Park, Water-assisted growth of cobalt oxide and cobalt hydroxide overlayers on the Pt3Co(111) surface, ACS Appl. Energy Mater. 2 (12) (2019) 8580–8586 [47] J. Liu, J.Z. Lan, L.Y. Yang, F. Wang, J. Yin, PtM (M = Fe, co, Ni) bimetallic nanoclusters as active, methanol-tolerant, and stable catalysts toward the oxygen reduction reaction, ACS Sustainable Chem. Eng. 7 (7) (2019) 6541–6549 [48] K. Miyatake, Y. Shimizu, Pt/co alloy nanoparticles prepared by nanocapsule method exhibit a high oxygen reduction reaction activity in the alkaline media, ACS Omega 2 (5) (2017) 2085–2089 [49] S.Y. Shen, F. Li, L.X. Luo, Y.G. Guo, X.H. Yan, C.C. Ke, J.L. Zhang, DMF-coordination assisted electrodeposition of highly active PtCo alloy catalysts for the oxygen reduction reaction, J. Electrochem. Soc. 165 (2) (2018) D43–D49 [50] B.T. Sneed, D.A. Cullen, R. Mukundan, R.L. Borup, K.L. More, PtCo cathode catalyst morphological and compositional changes after PEM fuel cell accelerated stress testing, J. Electrochem. Soc. 165 (6) (2018) F3078–F3084 [51] Y. Kamitaka, N. Taguchi, Y. Morimoto, Assessing the potential of co-Pt bronze for electrocatalysis in acidic media, Catalysts 8 (7) (2018) 258 [52] J.N. Zheng, L.L. He, C. Chen, A.J. Wang, K.F. Ma, J.J. Feng, One-pot synthesis of platinum3cobalt nanoflowers with enhanced oxygen reduction and methanol oxidation, J. Power Sources 268 (2014) 744–751 [53] L. Zhang, X.F. Zhang, X.L. Chen, A.J. Wang, D.M. Han, Z.G. Wang, J.J. Feng, Facile solvothermal synthesis of Pt71Co29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions, J. Colloid Interface Sci. 536 (2019) 556–562 [54] D.C. Higgins, S.Y. Ye, S. Knights, Z.W. Chen, Highly durable platinum-cobalt nanowires by microwave irradiation as oxygen reduction catalyst for PEM fuel cell, Electrochem. Solid-State Lett. 15 (6) (2012) B83 [55] Z.K. Liu, Y.H. Yin, D.J. Yang, C.M. Zhang, P.W. Ming, B. Li, S.T. Yang, Efficient synthesis of Pt–Co nanowires as cathode catalysts for proton exchange membrane fuel cells, RSC Adv. 10 (11) (2020) 6287–6296 [56] Q.F. Xiao, M. Cai, M.P. Balogh, M.M. Tessema, Y.F. Lu, Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts, Nano Res. 5 (3) (2012) 145–151 [57] S.Q. Hu, Z. Wang, H.L. Chen, S.B. Wang, X.G. Li, X.Y. Zhang, P.K. Shen, Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction, J. Electroanal. Chem. 870 (2020) 114194 [58] X.L. Chen, L. Zhang, J.J. Feng, W.P. Wang, P.X. Yuan, D.M. Han, A.J. Wang, Facile solvothermal fabrication of polypyrrole sheets supported dendritic platinum-cobalt nanoclusters for highly efficient oxygen reduction and ethylene glycol oxidation, J. Colloid Interface Sci. 530 (2018) 394–402 [59] X.F. Zhang, H.B. Meng, H.Y. Chen, J.J. Feng, K.M. Fang, A.J. Wang, Bimetallic PtCo alloyed nanodendritic assemblies as an advanced efficient and robust electrocatalyst for highly efficient hydrogen evolution and oxygen reduction, J. Alloys Compd. 786 (2019) 232–239 [60] X.X. Zhu, L. Huang, M. Wei, P. Tsiakaras, P.K. Shen, Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis, Appl. Catal. B Environ. 281 (2021) 119460 [61] L.H.S. Gasparotto, E.G. Ciapina, E.A. Ticianelli, G. Tremiliosi-Filho, Electrodeposition of PVA-protected PtCo electrocatalysts for the oxygen reduction reaction in H2SO4, J. Power Sources 197 (2012) 97–101 [62] O. Sorsa, H. Romar, U. Lassi, T. Kallio, Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cell, Electrochimica Acta 230 (2017) 49–57. [63] M. Vorokhta, I. Khalakhan, M. Vaclavu, G. Kovacs, S.M. Kozlov, P. Kus, T. Skala, N. Tsud, J. Lavkova, V. Potin, I. Matolinova, K.M. Neyman, and V. Matolin, Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells. Appl. Surf. Sci. 365 (2016) 245-251 [64] S. Kobayashi, M. Aoki, M. Wakisaka, T. Kawamoto, R. Shirasaka, K. Suda, D.A. Tryk, J. Inukai, T. Kondo, H. Uchida, Atomically flat Pt skin and striking enrichment of co in underlying alloy at Pt3 co(111) single crystal with unprecedented activity for the oxygen reduction reaction, ACS Omega 3 (1) (2018) 154–158 [65] N. Todoroki, T. Wadayama, Oxygen reduction reaction activity for cobalt-deposited Pt(111) model catalyst surfaces in alkaline solution, Electrochemistry 86 (5) (2018) 243–245 [66] X.M. Zhang, T.W. Gu, S.D. Shi, L.Y. Li, S.S. Yu, Enhanced stability of PtML/MML/WC(0001) multilayer alloys under electrochemical conditions: A first principle study, ACS Appl. Mater. Interfaces 10 (18) (2018) 15704–15711 [67] E. Pizzutilo, J. Knossalla, S. Geiger, J.P. Grote, G. Polymeros, C. Baldizzone, S. Mezzavilla, M. Ledendecker, A. Mingers, S. Cherevko, F. Schüth, K.J.J. Mayrhofer, The space confinement approach using hollow graphitic spheres to unveil activity and stability of Pt-co nanocatalysts for PEMFC, Adv. Energy Mater. 7 (20) (2017) 1700835 [68] L.K. Wang, Z.H. Tang, W. Yan, Q.N. Wang, H.Y. Yang, S.W. Chen, Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media, J. Power Sources 343 (2017) 458–466 [69] X.J. Wang, W.H. Huang, S.J. Liao, B.T. Li, High oxygen reduction activity of TM13@Pt134 and TM12N@Pt134 (TM=Ti, V, Mn, Fe, Co, Ni, and Cu) core-shell electrocatalysts studied by first-principles theory, Mater. Chem. Phys. 212 (2018) 378–384 [70] W.H. Yang, L.L. Zou, Q.H. Huang, Z.Q. Zou, Y.M. Hu, H. Yang, Lattice contracted ordered intermetallic core-shell PtCo@Pt nanoparticles: Synthesis, structure and origin for enhanced oxygen reduction reaction, J. Electrochem. Soc. 164 (6) (2017) H331–H337 [71] S. Dai, Y. You, S. Zhang, W. Cai, M. Xu, L. Xie, R. Wu, G.W.“. Graham, X. Pan, In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles”>, Nat. Commun. 8“> (2017) 204 [72] S. Kaneko, R. Myochi, S. Takahashi, N. Todoroki, T. Wadayama, T. Tanabe, Ultrahigh vacuum synthesis of strain-controlled model Pt(111)-shell layers: Surface strain and oxygen reduction reaction activity, J. Phys. Chem. Lett. 8 (21) (2017) 5360–5365 [73] S.Z. Liu, P. Liu, Optimized Pt-based catalysts for oxygen reduction reaction in alkaline solution: A first principle study, J. Electrochem. Soc. 165 (15) (2018) J3090–J3094 [74] X. Wang, Z.L. Zhao, P. Sun, F.W. Li, One-step synthesis of supported high-index faceted platinum–cobalt nanocatalysts for an enhanced oxygen reduction reaction, ACS Appl. Energy Mater. 3 (5) (2020) 5077–5082 [75] Q.L. Chen, Z.M. Cao, G.F. Du, Q. Kuang, J. Huang, Z.X. Xie, L.S. Zheng, Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications, Nano Energy 39 (2017) 582–589 [76] G.Z. Hu, E. Gracia-Espino, R. Sandström, T. Sharifi, S.D. Cheng, H.J. Shen, C.Y. Wang, S.J. Guo, G. Yang, T. Wågberg, Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt3Co–Pt core–shell nanoparticles, Catal. Sci. Technol. 6 (5) (2016) 1393–1401 [77] J. Wang, G.P. Wu, W.L. Wang, W.H. Xuan, J.X. Jiang, J.C. Wang, L. Li, W.F. Lin, W. Ding, Z.D. Wei, A neural-network-like catalyst structure for the oxygen reduction reaction: Carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies, J. Mater. Chem. A 7 (34) (2019) 19786–19792 [78] J.R. Li, S. Sharma, X.M. Liu, Y.T. Pan, J.S. Spendelow, M.F. Chi, Y.K. Jia, P. Zhang, D.A. Cullen, Z. Xi, H.H. Lin, Z.Y. Yin, B. Shen, M. Muzzio, C. Yu, Y.S. Kim, A.A. Peterson, K.L. More, S.H. Sun, Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis, Joule 3 (1) (2019) 124–135 [79] C. Shen, X.M. Li, Y.J. Wei, Z.M. Cao, H.Q. Li, Y.Q. Jiang, Z.X. Xie, PtCo-excavated rhombic dodecahedral nanocrystals for efficient electrocatalysis, Nanoscale Adv. 2 (10) (2020) 4881–4886 [80] V. di Noto, E. Negro, A. Nale, P.J. Kulesza, I.A. Rutkowska, K. Vezzù, G. Pagot, Correlation between precursor properties and performance in the oxygen reduction reaction of Pt and co “core-shell” carbon nitride-based electrocatalysts, Electrocatalysis 11 (2) (2020) 143–159 [81] H. Yano, J.M. Song, H. Uchida, M. Watanabe, Temperature dependence of oxygen reduction activity at carbon-supported PtXCo (X = 1, 2, and 3) alloy catalysts prepared by the nanocapsule method, J. Phys. Chem. C 112 (22) (2008) 8372–8380 [82] K. Okaya, H. Yano, K. Kakinuma, M. Watanabe, H. Uchida, Temperature dependence of oxygen reduction reaction activity at stabilized Pt skin-PtCo alloy/graphitized carbon black catalysts prepared by a modified nanocapsule method, ACS Appl. Mater. Interfaces 4 (12) (2012) 6982–6991 [83] K. Kakinuma, M. Hayashi, T. Hashimoto, A. Iiyama, M. Uchida, Enhancement of the catalytic activity and load cycle durability of a PtCo alloy cathode catalyst supported on Ta-doped SnO2 with a unique fused aggregated network microstructure for polymer electrolyte fuel cells, ACS Appl. Energy Mater. 3 (7) (2020) 6922–6928 [84] H.B. Meng, X.F. Zhang, Y.L. Pu, X.L. Chen, J.J. Feng, D.M. Han, A.J. Wang, One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis, J. Colloid Interface Sci. 543 (2019) 17–24 [85] M.J. Chen, S. Hwang, J.Z. Li, S. Karakalos, K.T. Chen, Y.H. He, S. Mukherjee, D. Su, G. Wu, Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts, Nanoscale 10 (36) (2018) 17318–17326 [86] B. Sravani, P. Raghavendra, Y. Chandrasekhar, Y.V.M. Reddy, R. Sivasubramanian, K. Venkateswarlu, G. Madhavi, L.S. Sarma, Immobilization of platinum-cobalt and platinum-nickel bimetallic nanoparticles on pomegranate peel extract-treated reduced graphene oxide as electrocatalysts for oxygen reduction reaction, Int. J. Hydrog. Energy 45 (13) (2020) 7680–7690 [87] S.M. Alia, K.O. Jensen, B.S. Pivovar, Y.S. Yan, Platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts, ACS Catal. 2 (5) (2012) 858–863 [88] S.I. Choi, S.U. Lee, W.Y. Kim, R. Choi, K. Hong, K.M. Nam, S.W. Han, J.T. Park, Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction, ACS Appl. Mater. Interfaces 4 (11) (2012) 6228–6234 [89] S.L. Yin, Z.Q. Wang, X.Q. Qian, D.D. Yang, Y. Xu, X.N. Li, L. Wang, H.J. Wang, PtM (M = co, Ni) mesoporous nanotubes as bifunctional electrocatalysts for oxygen reduction and methanol oxidation, ACS Sustainable Chem. Eng. 7 (8) (2019) 7960–7968 [90] S.J. Jiang, Y.W. Ma, G.Q. Jian, H.S. Tao, X.Z. Wang, Y.N. Fan, Y.N. Lu, Z. Hu, Y. Chen, Facile construction of Pt-co/CNx nanotube electrocatalysts and their application to the oxygen reduction reaction, Adv. Mater. 21 (48) (2009) 4953–4956 [91] E. Zagoraiou, N. Shroti, M.K. Daletou, Development of Pt-Co catalysts supported on carbon nanotubes using the polyol method—tuning the conditions for optimum properties, Mater. Today Chem. 16 (2020) 100263 [92] M. Lokanathan, I.M. Patil, M. Navaneethan, V. Parey, R. Thapa, B. Kakade, Designing of stable and highly efficient ordered Pt2CoNi ternary alloy electrocatalyst: The origin of dioxygen reduction activity, Nano Energy 43 (2018) 219–227 [93] M.T. Liu, L.X. Chen, A.J. Wang, K.M. Fang, J.J. Feng, Ternary PtCoNi flower-like networks: One-step additive-free synthesis and highly boosted electrocatalytic performance for hydrogen evolution and oxygen reduction, Int. J. Hydrog. Energy 42 (40) (2017) 25277–25284 [94] R.M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R.E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero, J.M. Feliu, P. Strasser, Elemental anisotropic growth and atomic-scale structure of shape-controlled octahedral Pt–Ni–co alloy nanocatalysts, Nano Lett. 15 (11) (2015) 7473–7480 [95] M. Lokanathan, I.M. Patil, A.K. Usman, A. Swami, P. Walke, M. Navaneethan, B. Kakade, Unusual enhancement in the electroreduction of oxygen by NiCoPt by surface tunability through potential cycling, RSC Adv. 7 (19) (2017) 11777–11785 [96] X.Y. Liu, G.T. Fu, Y. Chen, Y.W. Tang, P.L. She, T.H. Lu, Pt-Pd-co trimetallic alloy network nanostructures with superior electrocatalytic activity towards the oxygen reduction reaction, Chem. Eur. J. 20 (2) (2014) 585–590 [97] K.C. Wang, H.C. Huang, C.H. Wang, Synthesis of Pd@Pt 3 Co/C core–shell structure as catalyst for oxygen reduction reaction in proton exchange membrane fuel cell, Int. J. Hydrog. Energy 42 (16) (2017) 11771–11778 [98] S. Knani, L. Chirchi, W.T. Napporn, S. Baranton, J.M. Léger, A. Ghorbel, Promising ternary Pt-Co-Sn catalyst for the oxygen reduction reaction, J. Electroanal. Chem. 738 (2015) 145–153 [99] S. Matsumoto, M. Nagamine, Z. Noda, J. Matsuda, S.M. Lyth, A. Hayashi, K. Sasaki, PEFC electrocatalysts supported on Nb-SnO2 for MEAs with high activity and durability: Part II. application of bimetallic Pt-alloy catalysts, J. Electrochem. Soc. 165 (14) (2018) F1164–F1175 [100] P. Kolla, A. Smirnova, Methanol oxidation and oxygen reduction activity of PtIrCo-alloy nanocatalysts supercritically deposited within 3D carbon aerogel matrix, Electrochimica Acta 182 (2015) 20–30 [101] F. Godínez-Salomón, L. Albiter, R. Mendoza-Cruz, C.P. Rhodes, Bimetallic two-dimensional nanoframes: High activity acidic bifunctional oxygen reduction and evolution electrocatalysts, ACS Appl. Energy Mater. 3 (3) (2020) 2404–2421 [102] P.H. Huang, C.W. Liu, Y.Z. Guo, S.W. Lee, Z.J. Lin, K.W. Wang, The effect of atomic arrangements on the oxygen reduction reaction performance of carbon-supported CoPtAg catalysts, Electrochimica Acta 219 (2016) 531–539 [103] L.B. Zhang, X.D. Ji, X.R. Wang, Y.Q. Fu, H. Zhu, T.X. Liu, Chemically ordered Pt–co–Cu/C as excellent electrochemical catalyst for oxygen reduction reaction, J. Electrochem. Soc. 167 (2) (2020) 024507 [104] L.M. Guo, D.F. Zhang, L. Guo, Structure design reveals the role of Au for ORR catalytic performance optimization in PtCo-based catalysts, Adv. Funct. Mater. 30 (22) (2020) 2001575 [105] F. Wang, Q. Zhang, Z.Y. Rui, J. Li, J.G. Liu, High-loading Pt-co/C catalyst with enhanced durability toward the oxygen reduction reaction through surface Au modification, ACS Appl. Mater. Interfaces 12 (27) (2020) 30381–30389 [106] S.C. Liu, S. Li, R.Y. Wang, Y. Rao, Q. Zhong, K. Hong, M. Pan, Preparation of high performance and ultra-low platinum loading membrane electrode assembly for PEMFC commercial application, J. Electrochem. Soc. 166 (16) (2019) F1308–F1313 [107] M.A.Z.G. Sial, H.F. Lin, M. Zulfiqar, S. Ullah, B. Ni, X. Wang, Trimetallic PtCoFe alloy monolayer superlattices as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts, Small 13 (24) (2017) 1700250 [108] Wang, Yao, Kang, Xia, Gan, Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction, Catalysts 9 (7) (2019) 569 [109] T. Asset, R. Chattot, M. Fontana, B. Mercier-Guyon, N. Job, L. Dubau, F. Maillard, Cover feature: A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles (ChemPhysChem 13/2018), ChemPhysChem 19 (13) (2018) 1549 [110] J. Stacy, Y.N. Regmi, B. Leonard, M.H. Fan, The recent progress and future of oxygen reduction reaction catalysis: A review, Renew. Sustain. Energy Rev. 69 (2017) 401–414 [111] G.W. Sievers, A.W. Jensen, J. Quinson, A. Zana, F. Bizzotto, M. Oezaslan, A. Dworzak, J.J.K. Kirkensgaard, T.E.L. Smitshuysen, S. Kadkhodazadeh, M. Juelsholt, K.M.Ø. Jensen, K. Anklam, H. Wan, J. Schäfer, K. Čépe, M. Escudero-Escribano, J. Rossmeisl, A. Quade, V. Brüser, M. Arenz, Self-supported Pt–CoO networks combining high specific activity with high surface area for oxygen reduction, Nat. Mater. 20 (2) (2021) 208–213 [112] T.N. Tran, H.Y. Lee, J.D. Park, T.H. Kang, B.J. Lee, J.S. Yu, Synergistic CoN-decorated Pt catalyst on two-dimensional porous co–N-doped carbon nanosheet for enhanced oxygen reduction activity and durability, ACS Appl. Energy Mater. 3 (7) (2020) 6310–6322 [113] V. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure, Angew. Chem. Int. Ed Engl. 45 (18) (2006) 2897–2901 [114] Y.X. Ma, L.S. Yin, T. Yang, Q.L. Huang, M.S. He, H. Zhao, D.E. Zhang, M.Y. Wang, Z.W. Tong, One-pot synthesis of concave platinum-cobalt nanocrystals and their superior catalytic performances for methanol electrochemical oxidation and oxygen electrochemical reduction, ACS Appl. Mater. Interfaces 9 (41) (2017) 36164–36172 [115] S.P. Chen, M.F. Li, M.Y. Gao, J.B. Jin, M.A. van Spronsen, M.B. Salmeron, P.D. Yang, High-performance Pt–co nanoframes for fuel-cell electrocatalysis, Nano Lett. 20 (3) (2020) 1974–1979 [116] L.Y. Jiang, A.J. Wang, X.S. Li, J.H. Yuan, J.J. Feng, Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation, ChemElectroChem 4 (11) (2017) 2909–2914 [117] K. Eid, H.J. Wang, V. Malgras, S.M. Alshehri, T. Ahamad, Y. Yamauchi, L. Wang, One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction, J. Electroanal. Chem. 779 (2016) 250–255 [118] Y.Z. Cai, P. Gao, F.H. Wang, H. Zhu, Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction, Electrochimica Acta 245 (2017) 924–933 [119] Y.S. Kang, D. Choi, H.Y. Park, S.J. Yoo, Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction, J. Ind. Eng. Chem. 78 (2019) 448–454 [120] S. Lee, J.H. Jang, I. Jang, D. Choi, K.S. Lee, D. Ahn, Y.S. Kang, H.Y. Park, S.J. Yoo, Development of robust Pt shell through organic hydride donor in PtCo@Pt core-shell electrocatalysts for highly stable proton exchange membrane fuel cells, J. Catal. 379 (2019) 112–120. [121] L. Wang, W.P. Gao, Z.Y. Liu, Z.H. Zeng, Y.F. Liu, M. Giroux, M.F. Chi, G.F. Wang, J. Greeley, X.Q. Pan, C. Wang, Core–shell nanostructured cobalt–platinum electrocatalysts with enhanced durability, ACS Catal. 8 (1) (2018) 35–42 [122] T. Xiang, L. Fang, J. Wan, L. Liu, J.J. Gao, H.T. Xu, H.J. Zhang, X. Gu, Y. Wang, Thickness-tunable core–shell Co@Pt nanoparticles encapsulated in sandwich-like carbon sheets as an enhanced electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A 6 (43) (2018) 21396–21403 [123] J.D. Lee, D. Jishkariani, Y.R. Zhao, S. Najmr, D. Rosen, J.M. Kikkawa, E.A. Stach, C.B. Murray, Tuning the electrocatalytic oxygen reduction reaction activity of Pt–co nanocrystals by cobalt concentration with atomic-scale understanding, ACS Appl. Mater. Interfaces 11 (30) (2019) 26789–26797. [124] J.S. Liang, N. Li, Z.L. Zhao, L. Ma, X.M. Wang, S.Z. Li, X. Liu, T.Y. Wang, Y.P. Du, G. Lu, J.T. Han, Y.H. Huang, D. Su, Q. Li, Tungsten-doped L1 0-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode, Angew. Chem. Int. Ed. 58 (43) (2019) 15471–15477 [125] L.Z. Bu, S.J. Guo, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J.L. Yao, J. Guo, X.Q. Huang, Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis, Nat. Commun. 7 (2016) 11850. [126] M.M. Liu, S.J. He, W. Chen, Free-standing 3D hierarchical carbon foam-supported PtCo nanowires with “Pt skin” as advanced electrocatalysts, Electrochimica Acta 199 (2016) 218–226 [127] Z.-N. Yu, Z. Zhang, Z.-S. Lv, M.-T. Liu, L. Zhang, A.-J. Wang, L.-Y. Jiang, and J.-J. Feng, Platinum(69)-cobalt(31) alloyed nanosheet nanoassemblies as advanced bifunctional electrocatalysts for boosting ethylene glycol oxidation and oxygen reduction. J. Colloid Interface Sci. 525 (2018) 216-224 [128] L.Y. Jiang, X.X. Lin, A.J. Wang, J.H. Yuan, J.J. Feng, X.S. Li, Facile solvothermal synthesis of monodisperse Pt2.6 Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions, Electrochimica Acta 225 (2017) 525–532 [129] J.J. Gao, F. Zhang, W. Gan, Y.W. Gui, H.J. Qiu, H.L. Li, Q.H. Yuan, MOF-derived 2D/3D hierarchical N-doped graphene as support for advanced Pt utilization in ethanol fuel cell, ACS Appl. Mater. Interfaces 12 (42) (2020) 47667–47676 [130] Y.C. Qin, X. Zhang, X.P. Dai, H. Sun, Y. Yang, X.S. Li, Q.X. Shi, D.W. Gao, H. Wang, N.F. Yu, S.G. Sun, Graphene oxide-assisted synthesis of Pt-co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties, Small 12 (4) (2016) 524–533 [131] Y.G. Zhao, J.J. Liu, Y.J. Wu, F. Wang, Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction, J. Power Sources 360 (2017) 528–537 [132] W.H. Lai, B.W. Zhang, Z.P. Hu, X.M. Qu, Y.X. Jiang, Y.X. Wang, J.Z. Wang, H.K. Liu, S.L. Chou, The quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction, Adv. Funct. Mater. 29 (13) (2019) 1807340. [133] J. Ying, J. Li, G.P. Jiang, Z.P. Cano, Z. Ma, C. Zhong, D. Su, Z.W. Chen, Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction, Appl. Catal. B Environ. 225 (2018) 496–503 [134] C. Cao, L.L. Wei, Q.R. Zhai, J.L. Ci, W.W. Li, G. Wang, J.Q. Shen, Gas-flow tailoring fabrication of graphene-like co-nx-C nanosheet supported sub-10 nm PtCo nanoalloys as synergistic catalyst for air-cathode microbial fuel cells, ACS Appl. Mater. Interfaces 9 (27) (2017) 22465–22475 [135] N.N. Du, C.M. Wang, R. Long, Y.J. Xiong, N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction, Nano Res. 10 (9) (2017) 3228–3237. [136] X. Shi, N. Iqbal, S.S. Kunwar, G. Wahab, H.A. Kasat, A.M. Kannan, PtCo@NCNTs cathode catalyst using ZIF-67 for proton exchange membrane fuel cell, Int. J. Hydrog. Energy 43 (6) (2018) 3520–3526 [137] R.-Q. Yao, L.-P. Han, X.-Y. Lang, T. Cheng, Z. Wen, G. Liu, and Q. Jiang, Nanoporous (Pt1-xCox)(3)Al intermetallic compound as a high-performance catalyst for oxygen reduction reaction. Int. J. Hydrogen Energy 43 (2018) 19947-19954. [138] X.-Y. Wang, J.-J. Feng, L. Zhang, X. Luo, Q.-L. Zhang, and A.-J. Wang, Bioinspired one-pot fabrication of triple-layered Rh@Co@Pt-skin core-shell nanodendrites: A highly active and durable electrocatalyst towards oxygen reduction reaction. Electrochim. Acta 321 (2019) 134660. [139] T.Y. Wang, J.S. Liang, Z.L. Zhao, S.Z. Li, G. Lu, Z.C. Xia, C. Wang, J.H. Luo, J.T. Han, C. Ma, Y.H. Huang, Q. Li, Sub-6 nm fully ordered L 1 0-Pt–Ni–co nanoparticles enhance oxygen reduction via co doping induced ferromagnetism enhancement and optimized surface strain, Adv. Energy Mater. 9 (17) (2019) 1803771 [140] J.R. Li, S. Sharma, K.C. Wei, Z.T. Chen, D. Morris, H.H. Lin, C. Zeng, M.F. Chi, Z.Y. Yin, M. Muzzio, M.Q. Shen, P. Zhang, A.A. Peterson, S.H. Sun, Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction, J. Am. Chem. Soc. 142 (45) (2020) 19209–19216. [141] G.M. Leteba, D.R.G. Mitchell, P.B.J. Levecque, C.I. Lang, Solution-grown dendritic Pt-based ternary nanostructures for enhanced oxygen reduction reaction functionality, Nanomaterials (Basel) 8 (7) (2018) 462 [142] K.Z. Jiang, D.D. Zhao, S.J. Guo, X. Zhang, X. Zhu, J. Guo, G. Lu, X.Q. Huang, Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires, Sci. Adv. 3 (2) (2017) e1601705 [143] J. Choi, J. Cho, C.W. Roh, B.S. Kim, M.S. Choi, H. Jeong, H.C. Ham, H. Lee, Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells, Appl. Catal. B Environ. 247 (2019) 142–149. [144] Y.J. Wu, Y.G. Zhao, J.J. Liu, F. Wang, Adding refractory 5d transition metal W into PtCo system: An advanced ternary alloy for efficient oxygen reduction reaction, J. Mater. Chem. A 6 (23) (2018) 10700–10709. [145] S.H. Noh, M.H. Seo, J.K. Seo, P. Fischer, B. Han, First principles computational study on the electrochemical stability of Pt–Co nanocatalysts, Nanoscale 5 (18) (2013) 8625. [146] N.K. Chaudhari, J. Joo, H.B. Kwon, B. Kim, H.Y. Kim, S.H. Joo, K. Lee, Nanodendrites of platinum-group metals for electrocatalytic applications, Nano Res. 11 (12) (2018) 6111–6140 [147] C.Y. Zhai, H.M. Zhang, J.Y. Hu, L.X. Zeng, M.Q. Xue, Y.K. Du, M.S. Zhu, Enhanced formic acid electrooxidation reaction enabled by 3D PtCo nanodendrites electrocatalyst, J. Alloys Compd. 774 (2019) 274–281. [148] H.P. Rong, J.J. Mao, P.Y. Xin, D.S. He, Y.J. Chen, D.S. Wang, Z.Q. Niu, Y.E. Wu, Y.D. Li, Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: Effective and stable catalysts, Adv. Mater. 28 (13) (2016) 2540–2546 [149] W.S. Jung, B.N. Popov, Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells, ACS Sustain. Chem. Eng. 5 (11) (2017) 9809–9817 [150] Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruña, Synergistic bimetallic metallic organic framework-derived Pt-co oxygen reduction electrocatalysts, ACS Nano 14 (10) (2020) 13069–13080 [151] Y.H. Wang, J.B. Le, W.Q. Li, J. Wei, P.M. Radjenovic, H. Zhang, X.S. Zhou, J. Cheng, Z.Q. Tian, J.F. Li, In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR), Angew. Chem. Int. Ed. 58 (45) (2019) 16062–16066 [152] Q.Y. Jia, J.K. Li, K. Caldwell, D.E. Ramaker, J.M. Ziegelbauer, R.S. Kukreja, A. Kongkanand, S. Mukerjee, Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: Revealing the asymmetric volcano nature of redox catalysis, ACS Catal. 6 (2) (2016) 928–938 [153] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem. 2 (6) (2010) 454–460 [154] H. Nishikawa, H. Yano, J. Inukai, D.A. Tryk, A. Iiyama, H. Uchida, Effects of sulfate on the oxygen reduction reaction activity on stabilized Pt skin/PtCo alloy catalysts from 30 to 80 ℃, Langmuir 34 (45) (2018) 13558–13564 [155] H. Yano, N. Takao, M. Arao, M. Matsumoto, T. Itoh, H. Imai, A. Iiyama, J. Inukai, H. Uchida, Potential cycle-induced change in the crystal structure of a Pt-skin/PtCo alloy nanostructured electrocatalyst for fuel cells, ACS Appl. Nano Mater. 2 (12) (2019) 7473–7477 [156] H. Yano, I. Arima, M. Watanabe, A. Iiyama, H. Uchida, Oxygen reduction activity and durability of ordered and disordered Pt3Co alloy nanoparticle catalysts at practical temperatures of polymer electrolyte fuel cells, J. Electrochem. Soc. 164 (9) (2017) F966–F972 [157] J. Kim, C.B. Rong, Y. Lee, J.P. Liu, S.H. Sun, From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles, Chem. Mater. 20 (23) (2008) 7242–7245 [158] Y. Takahashi, T. Kadono, S. Yamamoto, V.R. Singh, V.K. Verma, K. Ishigami, G. Shibata, T. Harano, Y. Takeda, T. Okane, Y. Saitoh, H. Yamagami, M. Takano, A. Fujimori, Orbital magnetic moment and coercivity ofSiO2-coated FePt nanoparticles studied by X-ray magnetic circular dichroism, Phys. Rev. B 90 (2) (2014) 024423 [159] Z.Y. Qi, C.X. Xiao, C. Liu, T.W. Goh, L. Zhou, R. Maligal-Ganesh, Y.C. Pei, X.L. Li, L.A. Curtiss, W.Y. Huang, Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc. 139 (13) (2017) 4762–4768 [160] W.S. Jung, B.N. Popov, New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs, ACS Appl. Mater. Interfaces 9 (28) (2017) 23679–23686 [161] S. Sharma, C. Zeng, A.A. Peterson, Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study, J. Chem. Phys. 150 (4) (2019) 041704 [162] M.J. Liu, H.L. Xin, Q. Wu, Unusual strain effect of a Pt-based L10 face-centered tetragonal core in core/shell nanoparticles for the oxygen reduction reaction, Phys. Chem. Chem. Phys. 21 (12) (2019) 6477–6484 [163] M. Watanabe, H. Yano, D.A. Tryk, H. Uchida, Highly durable and active PtCo alloy/graphitized carbon black cathode catalysts by controlled deposition of stabilized Pt skin layers, J. Electrochem. Soc. 163 (6) (2016) F455–F463 [164] Z.X. Wang, X.Z. Yao, Y.Q. Kang, L.Q. Miao, D.S. Xia, L. Gan, Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity, Adv. Funct. Mater. 29 (35) (2019) 1902987 [165] R. Wainright, R.P. Ramasamy, Platinum and platinum-cobalt nanowires supported on carbon nanospheres as electrocatalysts for oxygen reduction reaction, J. Electrochem. Soc. 163 (6) (2016) F533–F538 [166] S.M. Alia, S. Pylypenko, K.C. Neyerlin, D.A. Cullen, S.S. Kocha, B.S. Pivovar, Platinum-coated cobalt nanowires as oxygen reduction reaction electrocatalysts, ACS Catal. 4 (8) (2014) 2680–2686 [167] H. Lv, J. Wang, Z. Yan, B. Li, D. Yang, C. Zhang, Carbon-supported Pt-co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells, Fuel Cells 17 (5) (2017) 635–642 [168] W.P. Xiao, W. Lei, M.X. Gong, H.L. Xin, D.L. Wang, Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis, ACS Catal. 8 (4) (2018) 3237–3256 [169] H. Yano, M. Kataoka, H. Yamashita, H. Uchida, M. Watanabe, Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method, Langmuir 23 (11) (2007) 6438–6445 [170] R.K. Polagani, P.L. Suryawanshi, S.P. Gumfekar, S.H. Sonawane, M. Ashokkumar, Ultrasound-assisted synthesis of Pt–Co/C bimetallic alloys for oxygen reduction in PEM fuel cells, Sustain. Energy Fuels 2 (7) (2018) 1491–1499 [171] M. Chiwata, H. Yano, S. Ogawa, M. Watanabe, A. Iiyama, H. Uchida, Oxygen reduction reaction activity of carbon-supported Pt-Fe, Pt-co, and Pt-Ni alloys with stabilized Pt-skin layers, Electrochemistry 84 (3) (2016) 133–137 [172] Y.G. Zhao, C. Wang, J.J. Liu, F. Wang, PDA-assisted formation of ordered intermetallic CoPt 3 catalysts with enhanced oxygen reduction activity and stability, Nanoscale 10 (19) (2018) 9038–9043. [173] G.-T. Fu, X. Jiang, R. Wu, S.-H. Wei, D.-M. Sun, Y.-W. Tang, T.-H. Lu, and Y. Chen, Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Interfaces 6 (2014) 22790-22795 [174] J.L. Li, X.N. Fu, Z. Mao, Y.S. Yang, T. Qiu, Q.Z. Wu, Synthesis of PtM (M=Co, Ni)/reduced graphene oxide nanocomposites as electrocatalysts for the oxygen reduction reaction, Nanoscale Res. Lett. 11 (1) (2016) 3 [175] S. Louisia, Y.R.J. Thomas, P. Lecante, M. Heitzmann, M.R. Axet, P.A. Jacques, P. Serp, Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction, Beilstein J. Nanotechnol. 10 (2019) 1251–1269 [176] D. Kaewsai, M. Hunsom, Comparative study of the ORR activity and stability of Pt and PtM (M = Ni, co, Cr, Pd) supported on polyaniline/carbon nanotubes in a PEM fuel cell, Nanomaterials (Basel) 8 (5) (2018) E299 [177] D. Kaewsai, P. Piumsomboon, K. Pruksathorn, M. Hunsom, Synthesis of polyaniline-wrapped carbon nanotube-supported PtCo catalysts for proton exchange membrane fuel cells: Activity and stability tests, RSC Adv. 7 (34) (2017) 20801–20810 [178] K. Wang, W. Wu, Z.H. Tang, L.G. Li, S.W. Chen, N.M. Bedford, Hierarchically structured co(OH) 2/CoPt/N-CN air cathodes for rechargeable zinc-air batteries, ACS Appl. Mater. Interfaces 11 (5) (2019) 4983–4994 [179] L.N. Chong, J.G. Wen, J. Kubal, F.G. Sen, J.X. Zou, J. Greeley, M. Chan, H. Barkholtz, W.J. Ding, D.J. Liu, Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks, Science 362 (6420) (2018) 1276–1281 [180] Y.C. Shi, J.J. Feng, X.X. Lin, L. Zhang, J.H. Yuan, Q.L. Zhang, A.J. Wang, One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions, Electrochimica Acta 293 (2019) 504–513 [181] K. Huang, P.F. Xu, X. He, R.Y. Wang, Y.G. Wang, H.J. Yang, R. Zhang, M. Lei, H.L. Tang, Annealing-free platinum–cobalt alloy nanoparticles on nitrogen-doped mesoporous carbon with boosted oxygen electroreduction performance, ChemElectroChem 7 (15) (2020) 3341–3346 [182] F.F. Ren, H.W. Wang, C.Y. Zhai, M.S. Zhu, R.R. Yue, Y.K. Du, P. Yang, J.K. Xu, W.S. Lu, Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium, ACS Appl. Mater. Interfaces 6 (5) (2014) 3607–3614 [183] Q. Wang, Y. Tian, G.J. Chen, J.X. Zhao, Theoretical insights into the energetics and electronic properties of MPt12 (M = Fe, Co, Ni, Cu, and Pd) nanoparticles supported by N-doped defective graphene, Appl. Surf. Sci. 397 (2017) 199–205 [184] V.A. Bogdanovskaya, N.V. Panchenko, M.V. Radina, O.V. Korchagin, V.T. Novikov, Catalysts based on carbon nanotubes modified by N, Pt, or PtCo for oxygen reaction catalysis in nonaqueous electrolyte containing lithium ions, Mater. Chem. Phys. 258 (2021) 123856 [185] A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G.F. Harrington, S.M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, F. Jaouen, Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nat. Commun. 8 (1) (2017) 957 [186] Z.Y. Zhang, Z.P. Li, K.K. Meng, Y. Wu, J.K. Chen, X.G. Xu, Y. Jiang, Perpendicular magnetic anisotropy in SrTiO3/Co/Pt films induced by oxygen diffusion from CaTiO3 spacer layer, Appl. Phys. Lett. 116 (23) (2020) 232402 [187] H.-Y. Chen, H.-J. Niu, Z. Han, J.-J. Feng, H. Huang, and A.-J. Wang, Simple fabrication of trimetallic platinum-nickel-cobalt hollow alloyed 3D multipods for highly boosted hydrogen evolution reaction. J. Colloid Interface Sci. 570 (2020) 205-211. [188] Y. Zhuang, J.-P. Chou, P.-Y. Liu, T.-Y. Chen, J.-J. Kai, A. Hu, and H.-Y.T. Chen, Pt-3 clusters-decorated Co@Pd and Ni@Pd model core-shell catalyst design for the oxygen reduction reaction: A DFT study. J. Mater. Chem. A 6 (2018) 23326-23335 [189] C.J. Li, Y. Xu, Y.H. Li, H.R. Xue, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, Enhanced dual fuel cell electrocatalysis with trimetallic PtPdCo mesoporous nanoparticles, Chem. Asian J. 13 (19) (2018) 2939–2946 [190] S.R. Zhang, K. An, S.S. Li, Z.Y. Zhang, R.L. Sun, Y. Liu, Bi-active sites of stable and highly dispersed platinum and oxygen vacancy constructed by reducing a loaded perovskite-type oxide for CO oxidation, Appl. Surf. Sci. 532 (2020) 147455 [191] K.A. Kuttiyiel, Y. Choi, K. Sasaki, D. Su, S.M. Hwang, S.D. Yim, T.H. Yang, G.G. Park, R.R. Adzic, Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction, Nano Energy 29 (2016) 261–267 [192] Y.J. Sun, B.L. Huang, Y.J. Li, Y. Xing, M.C. Luo, N. Li, Z.H. Xia, Y.N. Qin, D. Su, L. Wang, S.J. Guo, Trifunctional fishbone-like PtCo/Ir enables high-performance zinc–air batteries to drive the water-splitting catalysis, Chem. Mater. 31 (19) (2019) 8136–8144 [193] W.Q. Li, Y.H. Li, H.Q. Fu, G.X. Yang, Q. Zhang, S.Z. Chen, F. Peng, Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries, Chem. Eng. J. 381 (2020) 122683 [194] L.M. Rivera Gavidia, G. García, V. Celorrio, M.J. Lázaro, E. Pastor, Methanol tolerant Pt2CrCo catalysts supported on ordered mesoporous carbon for the cathode of DMFC, Int. J. Hydrog. Energy 41 (43) (2016) 19645–19655 [195] S.D. Lankiang, S. Baranton, C. Coutanceau, Electrocatalytic behaviour towards oxygen reduction reaction of carbon-supported PtxMyAuz (M = Ni, Cu, Co) binary and ternary catalysts, Electrochimica Acta 242 (2017) 287–299 [196] S. Takahashi, N. Todoroki, R. Myochi, T. Nagao, N. Taguchi, T. Ioroi, F.E. Feiten, Y. Wakisaka, K. Asakura, O. Sekizawa, T. Sakata, K. Higashi, T. Uruga, Y. Iwasawa, T. Wadayama, Effective surface termination with Au on PtCo@Pt core-shell nanoparticle: Microstructural investigations and oxygen reduction reaction properties, J. Electroanal. Chem. 842 (2019) 1–7. [197] E. Lohrasbi, M. Javanbakht, S.A. Mozaffari, Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene, Appl. Surf. Sci. 407 (2017) 236–245 [198] H.D. Li, Y. Han, H. Zhao, W.J. Qi, D. Zhang, Y.D. Yu, W.W. Cai, S.X. Li, J.P. Lai, B.L. Huang, L. Wang, Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis, Nat. Commun. 11 (1) (2020) 5437 [199] L.T. Song, J.Q. Chang, Y.H. Ma, X.H. Tan, Y.Q. Xu, L.M. Guo, Z.X. Chen, T.Q. Zhao, Y.Q. Li, Y.L. Liu, Y. Zhang, W.G. Chu, Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction, RSC Adv. 10 (71) (2020) 43248–43255 [200] Y. Zheng, S. Chen, H.Y. Lu, C. Zhang, T.X. Liu, 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction, Nanotechnology 31 (36) (2020) 364003 [201] P. Zhu, J.X. Gao, S. Liu, Facile in situ coupling CoFe/Co nanoparticles and N-doped carbon nanotubes/graphitic nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries, J. Power Sources 449 (2020) 227512 [202] M.C. Qian, X.Y. Cheng, T.T. Sun, J.N. Tian, T.T. Isimjan, Z.F. Shi, X.L. Yang, Synergistic catalytic effect of N-doped carbon embedded with CoFe-rich CoFe2O4 clusters as highly efficient catalyst towards oxygen reduction, J. Alloys Compd. 819 (2020) 153015 [203] F.J. Li, Y. Yin, C. Zhang, W.J. Li, K. Maliutina, Q.L. Zhang, Q.X. Wu, C.X. He, Y. Zhang, M. Yang, L.D. Fan, Enhancing oxygen reduction performance of oxide-CNT through in situ generated nanoalloy bridging, Appl. Catal. B Environ. 263 (2020) 118297 [204] J.B. Tan, T. Thomas, J.X. Liu, L. Yang, L.H. Pan, R. Cao, H.J. Shen, J.C. Wang, J. Liu, M.H. Yang, Rapid microwave-assisted preparation of high-performance bifunctional Ni3Fe/Co-N-C for rechargeable Zn-air battery, Chem. Eng. J. 395 (2020) 125151 [205] L.G. Feng, R.F. Ding, Y.W. Chen, J.W. Wang, L. Xu, Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction, J. Power Sources 452 (2020) 227837 [206] B.Y. Song, S. Yao, Optimization of sulfurization process of cobalt sulfide and nitrogen doped carbon material for boosting the oxygen reduction reaction catalytic activity in alkaline medium, Front. Chem. 8 (2020) 314. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[4] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[5] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[6] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[7] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[8] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
[9] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[10] | Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245. |
[11] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[12] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[13] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[14] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[15] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 161-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||