[1] A.R. Sarhan, J. Naser, G. Brooks, CFD simulation on influence of suspended solid particles on bubbles' coalescence rate in flotation cell, Int. J. Miner. Process. 146 (2016) 54–64. [2] A.R. Sarhan, J. Naser, G. Brooks, CFD modeling of bubble column: Influence of physico–chemical properties of the gas/liquid phases properties on bubble formation, Sep. Purif. Technol. 201 (2018) 130–138. [3] A.R. Sarhan, J. Naser, G. Brooks, Effects of particle size and concentration on bubble coalescence and froth formation in a slurry bubble column, Particuology 36 (2018) 82-95. [4] W. Su, X.G. Shi, Y.Y. Wu, J.S. Gao, X.Y. Lan, Simulation on the effect of particle on flow hydrodynamics in a slurry bed, Powder. Technol. 361 (2020) 1006–1020. [5] L.J. Xu, B.R. Yuan, H.Y. Ni, C.X. Chen, Numerical simulation of bubble column flows in churn-turbulent regime: Comparison of bubble size models, Ind. Eng. Chem. Res. 52 (20) (2013) 6794–6802. [6] X.F. Guo, Q. Zhou, J. Li, C.X. Chen, Implementation of an improved bubble breakup model for TFM–PBM simulations of gas–liquid flows in bubble columns, Chem. Eng. Sci. 152 (2016) 255-266. [7] G.Y. Yang, H.H. Zhang, J.J. Luo, T.F. Wang, Drag force of bubble swarms and numerical simulations of a bubble column with a CFD–PBM coupled model, Chem. Eng. Sci. 192 (2018) 714-724. [8] H.H. Zhang, A. Sayyar, Y.L. Wang, T.F. Wang, Generality of the CFD–PBM coupled model for bubble column simulation, Chem. Eng. Sci. 219(2020) 115514. [9] H.H. Zhang, K.Y. Guo, Y.L. Wang, A. Sayyar, T.F. Wang, Numerical simulations of the effect of liquid viscosity on gas–liquid mass transfer of a bubble column with a CFD–PBM coupled model, Int. J. Heat. Mass. Transf. 161 (2020) 120229. [10] N. Yang, Q. Xiao, A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors, Chem. Eng. Sci. 170 (2017) 241-250. [11] M. An, X.P. Guan, N. Yang, Modeling the effects of solid particles in CFD–PBM simulation of slurry bubble columns, Chem. Eng. Sci. 223 (2020) 115743. [12] P. Yan, H.B. Jin, G.X. He, X.Y. Guo, L. Ma, S.H. Yang, R.Y. Zhang, Numerical simulation of bubble characteristics in bubble columns with different liquid viscosities and surface tensions using a CFD–PBM coupled model, Chem. Eng. Res. Des. 154(2020) 47–59. [13] X.P. Shang, B.F. Ng, M.P. Wan, S.R. Ding, Investigation of CFD–PBM simulations based on fixed pivot method: Influence of the moment closure, Chem. Eng. J. 382 (2020) 122882. [14] W.B. Shi, X.G. Yang, M. Sommerfeld, J. Yang, X.Y. Cai, G. Li, Y. Zong, Modelling of mass transfer for gas–liquid two-phase flow in bubble column reactor with a bubble breakage model considering bubble-induced turbulence, Chem. Eng. J. 371 (2019) 470-485. [15] Z.B. Huang, D.D. McClure, G.W. Barton, D.F. Fletcher, J.M. Kavanagh, Assessment of the impact of bubble size modelling in CFD simulations of alternative bubble column configurations operating in the heterogeneous regime, Chem. Eng. Sci. 186 (2018) 88-101. [16] X.B. Zhang, Z.H. Luo, Effects of bubble coalescence and breakup models on the simulation of bubble columns, Chem. Eng. Sci. 226 (2020) 115850. [17] S.G. Gong, N.N. Gao, L.C. Han, H.A. Luo, A theoretical model for bubble coalescence by coupling film drainage with approach processes, Chem. Eng. Sci. 213 (2020) 115387. [18] L.C. Han, J. Fu, M. Li, S.G. Gong, N.N. Gao, C. Zhang, H.A. Luo, A theoretical unsteady-state model for kL of bubbles based on the framework of wide energy spectrum, AIChE J. 62 (4) (2016) 1007-1022. [19] J. Solsvik, H.A. Jakobsen, Development of fluid particle breakup and coalescence closure models for the complete energy spectrum of isotropic turbulence, Ind. Eng. Chem. Res. 55 (5) (2016) 1449–1460. [20] C.T. Xing, T.F. Wang, K.Y. Guo, J.F. Wang, A unified theoretical model for breakup of bubbles and droplets in turbulent flows, AIChE J. 61(4) (2015) 1391-1403. [21] G.Y. Yang, K.Y. Guo, T.F. Wang, Numerical simulation of the bubble column at elevated pressure with a CFD–PBM coupled model, Chem. Eng. Sci.170 (2017) 251-262. [22] Q. Xiao, N. Yang, J.H. Li, Stability-constrained multi-fluid CFD models for gas–liquid flow in bubble columns, Chem. Eng. Sci.100 (2013) 279-292. [23] A. H. Syed, M. Boulet, T. Melchiori, J.M. Lavoie, CFD simulation of a slurry bubble column: Effect of population balance kernels, Comput. Fluids 175 (2018) 167-179. [24] P. Chen, J. Sanyal, M.P. Duduković, Numerical simulation of bubble columns flows: Effect of different breakup and coalescence closures, Chem. Eng. Sci. 60 (4) (2005) 1085-1101. [25] K. Ekambara, K. Nandakumar, J.B. Joshi, CFD simulation of bubble column reactor using population balance, Ind. Eng. Chem. Res. 47 (21) (2008) 8505-8516. [26] J.W. Chen, P. Gupta, S. Degaleesan, M.H. Al-Dahhan, M.P. Duduković, B.A. Toseland, Gas holdup distributions in large-diameter bubble columns measured by computed tomography, Flow. Meas. Instrum. 9 (2) (1998) 91-101. [27] H. Al-Naseri, J.P. Schlegel, M.H. Al-Dahhan, The effects of internals and low aspect ratio on the fully developed flow region and bubble properties in a pilot-plant bubble column, Exp. Therm. Fluid. Sci. 104 (2019) 284-301. [28] A.J. Sultan, L.S. Sabri, M.H. Al-Dahhan, Investigating the influence of the configuration of the bundle of heat exchanging tubes and column size on the gas holdup distributions in bubble columns via gamma-ray computed tomography, Exp. Therm. Fluid. Sci. 98 (2018) 68-85. [29] M. Ishii, N. Zuber, Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J. 25 (5) (1979) 843–855. [30] A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci. 57(11) (2002) 1849-1858. [31] T. Frank, P.J. Zwart, E. Krepper, H.M. Prasser, D. Lucas, Validation of CFD models for mono- and polydisperse air–water two-phase flows in pipes, Nucl. Eng. Des. 238 (3) (2008) 647-659. [32] A.D. Burns, T. Frank, I. Hamill, J.M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, In: Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan, 2004. [33] M. Pourtousi, J.N. Sahu, P. Ganesan, Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column, Chem. Eng. Process.: Process. Intensif. 75 (2014) 38-47. [34] R.M.A. Masood, A. Delgado, Numerical investigation of the interphase forces and turbulence closure in 3D square bubble columns, Chem. Eng. Sci. 108 (2014) 154-168. [35] R.F. Mudde, O. Simonin, Two- and three-dimensional simulations of a bubble plume using a two-fluid model, Chem. Eng. Sci. 54 (21) (1999) 5061–5069. [36] M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bubble columns, AIChE J. 36 (10) (1990) 1485-1499. [37] H.A. Luo, Coalescence, breakup and liquid circulation in bubble column reactors, Ph.D. Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1993. [38] H.A. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42 (5) (1996) 1225-233. [39] L.C. Han, Study on the behaviors of the mass transfer, breakup and coalescence of fluid particles in multiphase flows reactors, Ph.D. Thesis, Xiangtan University, China, 2010. [40] X.B. Zhang, W.C. Yan, Z.H. Luo, Numerical simulation of local bubble size distribution in bubble columns operated at heterogeneous regime, Chem. Eng. Sci. 231 (2021) 116266. [41] X.P. Guan, N. Yang, Bubble properties measurement in bubble columns: From homogeneous to heterogeneous regime, Chem. Eng. Res. Des.127 (2017) 103-112. [42] C. Han, X.P. Guan, N. Yang, Structure evolution and demarcation of small and large bubbles in bubble columns, Ind. Eng. Chem. Res. 57 (25) (2018) 8529-8540. |