Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 222-229.DOI: 10.1016/j.cjche.2022.06.020
Previous Articles Next Articles
Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang
Received:
2022-04-13
Revised:
2022-05-30
Online:
2023-06-03
Published:
2023-03-28
Contact:
Peipei Ai,E-mail:aipeipei@tyut.edu.cn;Wei Huang,E-mail:huangwei@tyut.edu.cn
Supported by:
Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang
通讯作者:
Peipei Ai,E-mail:aipeipei@tyut.edu.cn;Wei Huang,E-mail:huangwei@tyut.edu.cn
基金资助:
Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229.
Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation[J]. 中国化学工程学报, 2023, 55(3): 222-229.
[1] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (11) (2012) 4218–4244. [2] A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals, Chem. Rev. 107 (6) (2007) 2411–2502. [3] R.A. Kerr, R.F. Service, What can replace cheap oil: and when? Science 309 (5731) (2005) 101.https://doi.org/10.1126/science.309.5731.101 [4] Y.N. Sun, Q.X. Ma, Q.J. Ge, J. Sun, Tunable synthesis of ethanol or methyl acetate via dimethyl oxalate hydrogenation on confined iron catalysts, ACS Catal. 11 (8) (2021) 4908–4919. [5] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134 (34) (2012) 13922–13925. [6] L. Zhang, L.P. Han, G.F. Zhao, R.J. Chai, Q.F. Zhang, Y. Liu, Y. Lu, Structured Pd–Au/Cu-fiber catalyst for gas-phase hydrogenolysis of dimethyl oxalate to ethylene glycol, Chem. Commun. 51 (52) (2015) 10547–10550.https://doi.org/10.1039/c5cc03009a [7] J. Goldemberg, Ethanol for a sustainable energy future, Science 315 (5813) (2007) 808–810.https://pubmed.ncbi.nlm.nih.gov/17289989/ [8] M.L. Wang, D.W. Yao, A.T. Li, Y.W. Yang, J. Lv, S.Y. Huang, Y. Wang, X.B. Ma, Enhanced selectivity and stability of Cu/SiO2 catalysts for dimethyl oxalate hydrogenation to ethylene glycol by using silane coupling agents for surface modification, Ind. Eng. Chem. Res. 59 (20) (2020) 9414–9422. [9] Y.J. Zhao, H.H. Zhang, Y.X. Xu, S.N. Wang, Y. Xu, S.P. Wang, X.B. Ma, Interface tuning of cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst, J. Energy Chem. 49 (2020) 248–256. [10] G. Giorgianni, C. Mebrahtu, S. Perathoner, G. Centi, S. Abate, Hydrogenation of dimethyl oxalate to ethylene glycol on Cu/SiO2 catalysts prepared by a deposition-decomposition method: Optimization of the operating conditions and pre-reduction procedure, Catal. Today 390-391 (2022) 343–353. [11] Y.X. Xu, L.X. Kong, H.J. Huang, H. Wang, X.F. Wang, S.P. Wang, Y.J. Zhao, X.B. Ma, Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Sci. Technol. 11 (20) (2021) 6854–6865. [12] R.P. Ye, L. Lin, C.C. Chen, J.X. Yang, F. Li, X. Zhang, D.J. Li, Y.Y. Qin, Z.F. Zhou, Y.G. Yao, Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via Sol–gel method for the dimethyl oxalate hydrogenation reaction, ACS Catal. 8 (4) (2018) 3382–3394. [13] P.P. Ai, M.H. Tan, P. Reubroycharoen, Y. Wang, X.B. Feng, G.G. Liu, G.H. Yang, N. Tsubaki, Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production, Catal. Sci. Technol. 8 (24) (2018) 6441–6451. [14] R.P. Ye, L. Lin, L.C. Wang, D. Ding, Z.F. Zhou, P.B. Pan, Z.H. Xu, J. Liu, H. Adidharma, M. Radosz, M.H. Fan, Y.G. Yao, Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate, ACS Catal. 10 (8) (2020) 4465–4490. [15] W.Q. Yan, J.B. Zhang, R.J. Zhou, Y.Q. Cao, Y.A. Zhu, J.H. Zhou, Z.J. Sui, W. Li, D. Chen, X.G. Zhou, Identification of synergistic actions between Cu0 and cu+ sites in hydrogenation of dimethyl oxalate from microkinetic analysis, Ind. Eng. Chem. Res. 59 (52) (2020) 22451–22459. [16] C.C. Chen, L. Lin, R.P. Ye, L. Huang, L.B. Zhu, Y.Y. Huang, Y.Y. Qin, Y.G. Yao, Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation, Fuel 290 (2021) 120083. [17] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4 (2013) 2339. [18] R.P. Ye, L. Lin, Q.H. Li, Z.F. Zhou, T.T. Wang, C.K. Russell, H. Adidharma, Z.H. Xu, Y.G. Yao, M.H. Fan, Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds, Catal. Sci. Technol. 8 (14) (2018) 3428–3449. [19] J.W. Zheng, J.F. Zhou, H.Q. Lin, X.P. Duan, C.T. Williams, Y.Z. Yuan, CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol, J. Phys. Chem. C 119 (24) (2015) 13758–13766. [20] J. Ding, T. Popa, J.K. Tang, K.A.M. Gasem, M.H. Fan, Q. Zhong, Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol, Appl. Catal. B Environ. 209 (2017) 530–542. [21] Y.J. Zhao, Y.Q. Zhang, Y. Wang, J. Zhang, Y. Xu, S.P. Wang, X.B. Ma, Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation, Appl. Catal. A Gen. 539 (2017) 59–69. [22] C. Wen, Y.Y. Cui, W.L. Dai, S.H. Xie, K.N. Fan, Solvent feedstock effect: the insights into the deactivation mechanism of Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. (Camb) 49 (45) (2013) 5195–5197. [23] P.P. Ai, M.H. Tan, Y. Ishikuro, Y. Hosoi, G.H. Yang, Y. Yoneyama, N. Tsubaki, Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate, ChemCatChem 9 (6) (2017) 1067–1075. [24] Z.Q. Jiang, Z.J. Jiang, T. Maiyalagan, A. Manthiram, Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions, J. Mater. Chem. A 4 (16) (2016) 5877–5889. [25] H. Wang, Y. Shao, S.L. Mei, Y. Lu, M. Zhang, J.K. Sun, K. Matyjaszewski, M. Antonietti, J.Y. Yuan, Polymer-derived heteroatom-doped porous carbon materials, Chem. Rev. 120 (17) (2020) 9363–9419. [26] Y.R. Sun, C.Y. Du, M.C. An, L. Du, Q. Tan, C.T. Liu, Y.Z. Gao, G.P. Yin, Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction, J. Power Sources 300 (2015) 245–253. [27] P.P. Ai, M.H. Tan, N. Yamane, G.G. Liu, R.G. Fan, G.H. Yang, Y. Yoneyama, R.Q. Yang, N. Tsubaki, Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol, Chem. Eur. J. 23 (34) (2017) 8252–8261. [28] Y.S. Yun, H. Park, D. Yun, C.K. Song, T.Y. Kim, K.R. Lee, Y. Kim, J.W. Han, J. Yi, Tuning the electronic state of metal/graphene catalysts for the control of catalytic activity via N- and B-doping into graphene, Chem. Commun. 54 (52) (2018) 7147–7150. [29] P. Joshi, H.H. Huang, R. Yadav, M. Hara, M. Yoshimura, Boron-doped graphene as electrocatalytic support for iridium oxide for oxygen evolution reaction, Catal. Sci. Technol. 10 (19) (2020) 6599–6610. [30] A.Y. Yin, J.W. Qu, X.Y. Guo, W.L. Dai, K.N. Fan, The influence of B-doping on the catalytic performance of Cu/HMS catalyst for the hydrogenation of dimethyloxalate, Appl. Catal. A Gen. 400 (1–2) (2011) 39–47. [31] Z. He, H.Q. Lin, P. He, Y.Z. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 277 (1) (2011) 54–63. [32] S. Zhao, H.R. Yue, Y.J. Zhao, B. Wang, Y.C. Geng, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: enhanced stability with boron dopant, J. Catal. 297 (2013) 142–150. [33] G.A. Tiruye, D. Muñoz-Torrero, T. Berthold, J. Palma, M. Antonietti, N. Fechler, R. Marcilla, Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors, J. Mater. Chem. A 5 (31) (2017) 16263–16272. [34] H.N. Yang, W.J. Kim, Effect of boron-doping levels in Pt-B-graphene on the electrochemical properties and cell performance of high temperature proton exchange membrane fuel cells, Electrochimica Acta 209 (2016) 430–439. |
[1] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[2] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[3] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[4] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[5] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[6] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[7] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[8] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[9] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[10] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[11] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[12] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[13] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
[14] | Qunhong Liu, Jiangtao Yang, Hongwei Zhang, Hongming Sun, Shuzheng Wu, Bingqing Ge, Rong Wang, Pei Yuan. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 41-50. |
[15] | Ning Liu, Xingping Liu, Fumin Wang, Feng Xin, Mingshuai Sun, Yi Zhai, Xubin Zhang. CFD simulation study of the effect of baffles on the fluidized bed for hydrogenation of silicon tetrachloride [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 219-228. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||