[1] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis: Part I: Quantitative model-based methods, Comput. Chem. Eng. 27 (3) (2003) 293-311. [2] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies, Comput. Chem. Eng. 27 (3) (2003) 313–326. [3] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis: Part I: Quantitative model-based methods, Comput. Chem. Eng 27 (3) (2003) 293–311. [4] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer, London, 2001. [5] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (10) (2013) 3543–3562. [6] S. Yin, S.X. Ding, X.C. Xie, H. Luo, A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron. 61 (11) (2014) 6418–6428. [7] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. Rev. Control 36 (2) (2012) 220–234. [8] X.G. Deng, X.M. Tian, S. Chen, C.J. Harris, Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes, Chemom. Intell. Lab. Syst. 162 (2017) 21–34. [9] X. Zhang, W.W. Yan, H.H. Shao, Nonlinear multivariate quality estimation and prediction based on kernel partial least squares, Ind. Eng. Chem. Res. 47 (4) (2008) 1120–1131. [10] Y.N. Dong, S.J. Qin, A novel dynamic PCA algorithm for dynamic data modeling and process monitoring, J. Process. Control 67 (2018) 1–11. [11] Y.N. Dong, S.J. Qin, Regression on dynamic PLS structures for supervised learning of dynamic data, J. Process. Control 68 (2018) 64–72. [12] I. T. Jolliffe, Principal component analysis. Springer, New York, 2022. [13] C.D. Tong, T. Lan, H.Z. Yu, X. Peng, Distributed partial least squares based residual generation for statistical process monitoring, J. Process. Control 75 (2019) 77–85. [14] F. Ma, D. Lin, M. Xu, J. Wang, W. Sun, Early identification of small shift in process unit based on multivariate statistical method, Chem. Ind. & Eng. Pro. 39 (4) (2020) 1267-1272. [15] T. Lan, C.D. Tong, H.Z. Yu, X.H. Shi, L.J. Luo, Nonlinear process monitoring based on decentralized generalized regression neural networks, Expert Syst. Appl. 150 (2020) 113273. [16] H. Wu, J.S. Zhao, Self-adaptive deep learning for multimode process monitoring, Comput. Chem. Eng. 141 (2020) 107024. [17] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444. [18] M.T. McCann, K.H. Jin, M. Unser, Convolutional neural networks for inverse problems in imaging: A review, IEEE Signal Process. Mag. 34 (6) (2017) 85–95. [19] Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification, arXiv preprint (2015) arXiv:1510.03820. [20] U. Pak, J. Ma, U. Ryu, K. Ryom, U. Juhyok, K. Pak, C. Pak, Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China, Sci. Total. Environ. 699 (2020) 133561. [21] D. Cannizzaro, A. Aliberti, L. Bottaccioli, E. Macii, A. Acquaviva, E. Patti, Solar radiation forecasting based on convolutional neural network and ensemble learning, Expert Syst. Appl. 181 (2021) 115167. [22] W. Zhu, Y. Ma, Y. Zhou, J. Romagnoli, Deep learning based soft sensor and its application on a pyrolysis reactor for compositions predictions of gas phase components, In: The 13th International Symposium on Process Systems Engineering (PSE 2018), San Diego, USA, 2018. [23] A. Krizhevsy, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: International Conference on Neural Information Processing Systems (NIPS), Doha, Qatar, 2012. [24] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-net: ImageNet classification using binary convolutional neural networks, Comput. Vis. – ECCV 2016 (2016): 525–542. [25] A.A.M. Al-Saffar, H. Tao, M.A. Talab, Review of deep convolution neural network in image classification, 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). Jakarta, Indonesia. IEEE, 26–31. [26] T. He, R. Kong, A.J. Holmes, M. Nguyen, M.R. Sabuncu, S.B. Eickhoff, D. Bzdok, J. Feng, B. Yeo, Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics, NeuroImage 206 (2020) 116276. [27] F.Y. Ma, D.X. Lin, J.T. Zhong, X.Y. Han, J.D. Wang, W. Sun, CNN based process monitoring of spatially distributed system, 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS). Xiamen, China. IEEE, 695–700. [28] T. Kourti, J.F. MacGregor, Multivariate SPC methods for process and product monitoring, J. Qual. Technol. 28 (4) (1996) 409–428. [29] X.Y. Han, S.W. Tian, J.A. Romagnoli, H. Li, W. Sun, PCA-SDG based process monitoring and fault diagnosis: Application to an industrial pyrolysis furnace, IFAC-PapersOnLine 51 (18) (2018) 482–487. [30] D.Y. Tzeng, R.S. Berns, A review of principal component analysis and its applications to color technology, Color Res. Appl. 30 (2) (2005) 84–98. [31] J.W. Yan, X.X. Tian, Q. Zhou, Y.C. Yang, Improvement of scanlan's nonlinear model based on residual analysis, KSCE J. Civ. Eng. 23 (1) (2019) 280–286. [32] J. Shang, M.Y. Chen, H.W. Zhang, Fault detection based on augmented kernel Mahalanobis distance for nonlinear dynamic processes, Comput. Chem. Eng. 109 (2018) 311–321. [33] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (3) (1993) 245–255. [34] A. Bathelt, N.L. Ricker, M. Jelali, Revision of the Tennessee Eastman process model, IFAC-PapersOnLine 48 (8) (2015) 309–314. |