[1] K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev. 111 (9) (2011) 5345–5403. [2] L.J. Wang, Y. Sun, Engineering organophosphate hydrolase for enhanced biocatalytic performance: a review, Biochem. Eng. J. 168 (2021) 107945. [3] K. El-Boubbou, D.A. Schofield, C.C. Landry, Enhanced enzymatic activity of OPH in ammonium-functionalized mesoporous silica: surface modification and pore effects, J. Phys. Chem. C 116 (33) (2012) 17501–17506 [4] L. Han, A.H. Liu, Novel cell-inorganic hybrid catalytic interfaces with enhanced enzymatic activity and stability for sensitive biosensing of paraoxon, ACS Appl. Mater. Interfaces 9 (8) (2017) 6894–6901 [5] H. Cheng, Y.L. Zhao, X.J. Luo, D.S. Xu, X. Cao, J.H. Xu, Q. Dai, X.Y. Zhang, J. Ge, Y.P. Bai, Cross-linked enzyme-polymer conjugates with excellent stability and detergent-enhanced activity for efficient organophosphate degradation, Bioresour. Bioprocess. 5 (2018) 49 [6] M. Sharifi, S.M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies: Characterization and stability studies, Chin. J. Chem. Eng. 27 (1) (2019) 191–199 [7] D.F. Kienle, R.M. Falatach, J.L. Kaar, D.K. Schwartz, Correlating structural and functional heterogeneity of immobilized enzymes, ACS Nano 12 (8) (2018) 8091–8103 [8] E. Steen Redeker, D.T. Ta, D. Cortens, B. Billen, W. Guedens, P. Adriaensens, Protein engineering for directed immobilization, Bioconjug. Chem. 24 (11) (2013) 1761–1777 [9] S. Mahmoodi, M. Pourhassan-Moghaddam, D.W. Wood, H. Majdi, N. Zarghami, Current affinity approaches for purification of recombinant proteins, Cogent Biol. 5 (1) (2019) 1665406 [10] X.Y. Zhao, G.S. Li, S.F. Liang, Several affinity tags commonly used in chromatographic purification, J. Anal. Methods Chem. 2013 (2013) 581093 [11] H. López-Laguna, E. Voltà-Durán, E. Parladé, A. Villaverde, E. Vázquez, U. Unzueta, Insights on the emerging biotechnology of histidine-rich peptides, Biotechnol. Adv. 54 (2022) 107817 [12] J.C. Breger, S. Buckhout-White, S.A. Walper, E. Oh, K. Susumu, M.G. Ancona, I.L. Medintz, Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures, Nano Futur. 1 (1) (2017) 011002 [13] L.Y. Zhou, J.J. Li, J. Gao, H. Liu, S.G. Xue, L. Ma, G.X. Cao, Z.H. Huang, Y.J. Jiang, Facile oriented immobilization and purification of his-tagged organophosphohydrolase on viruslike mesoporous silica nanoparticles for organophosphate bioremediation, ACS Sustainable Chem. Eng. 6 (10) (2018) 13588–13598 [14] S.G. Xue, J.J. Li, L.Y. Zhou, J. Gao, G.H. Liu, L. Ma, Y. He, Y.J. Jiang, Simple purification and immobilization of his-tagged organophosphohydrolase from cell culture supernatant by metal organic frameworks for degradation of organophosphorus pesticides, J. Agric. Food Chem. 67 (49) (2019) 13518–13525 [15] Y.X. Li, P.Q. Luan, L.Y. Zhou, S.G. Xue, Y.H. Liu, Y.T. Liu, Y.J. Jiang, J. Gao, Purification and immobilization of His-tagged organophosphohydrolase on yolk–shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates, Biochem. Eng. J. 167 (2021) 107895 [16] C. Qi, J. Lin, L.H. Fu, P. Huang, Calcium-based biomaterials for diagnosis, treatment, and theranostics, Chem. Soc. Rev. 47 (2) (2018) 357–403 [17] J. Trbojević Ivić, D. Veličković, A. Dimitrijević, D. Bezbradica, V. Dragačević, M. Gavrović Jankulović, N. Milosavić, Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry, J. Sci. Food Agric. 96 (12) (2016) 4281–4287 [18] T.C. Coutinho, P.W. Tardioli, C.S. Farinas, Phytase immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed, Appl. Biochem. Biotechnol. 190 (1) (2020) 270–292 [19] T.C. Coutinho, P.W. Tardioli, C.S. Farinas, Hydroxyapatite nanoparticles modified with metal ions for xylanase immobilization, Int. J. Biol. Macromol. 150 (2020) 344–353 [20] T.C. Coutinho, M.J. Rojas, P.W. Tardioli, E.C. Paris, C.S. Farinas, Nanoimmobilization of β-glucosidase onto hydroxyapatite, Int. J. Biol. Macromol. 119 (2018) 1042–1051 [21] B.L. Xie, H. Zhang, X. Li, X.Y. Dong, Y. Sun, Iminodiacetic acid-modified human serum albumin: a multifunctional agent against metal-associated amyloid β-protein aggregation and cytotoxicity, ACS Chem. Neurosci. 8 (10) (2017) 2214–2224 [22] A.H. Memon, R.S. Ding, Q.P. Yuan, Y. Wei, H. Liang, Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties, Food Chem. 289 (2019) 568–574 [23] J. Ge, J.D. Lei, R.N. Zare, Protein–inorganic hybrid nanoflowers, Nat. Nanotechnol. 7 (7) (2012) 428–432 [24] G.A. Omburo, J.M. Kuo, L.S. Mullins, F.M. Raushel, Characterization of the zinc binding site of bacterial phosphotriesterase, J. Biol. Chem. 267 (19) (1992) 13278–13283 [25] L.B. Wang, Y.C. Wang, R. He, A.W. Zhuang, X.P. Wang, J. Zeng, J.G. Hou, A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance, J. Am. Chem. Soc. 135 (4) (2013) 1272–1275 [26] X.Z. Sun, H.Q. Niu, J.R. Song, D.H. Jiang, J. Leng, W. Zhuang, Y. Chen, D. Liu, H.J. Ying, Preparation of a copper polyphosphate kinase hybrid nanoflower and its application in ADP regeneration from AMP, ACS Omega 5 (17) (2020) 9991–9998 [27] T.T. Wang, Z.K. Kou, S.C. Mu, J.P. Liu, D.P. He, I.S. Amiinu, W. Meng, K. Zhou, Z.X. Luo, S. Chaemchuen, F. Verpoort, 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries, Adv. Funct. Mater. 28 (5) (2018) 1705048. |