Chinese Journal of Chemical Engineering ›› 2023, Vol. 56 ›› Issue (4): 97-103.DOI: 10.1016/j.cjche.2022.06.015
Previous Articles Next Articles
Yuhan Zhu, Jia Wei, Jun Li
Received:
2022-02-14
Revised:
2022-06-14
Online:
2023-06-13
Published:
2023-04-28
Contact:
Jia Wei,E-mail:weij@bjut.edu.cn
Supported by:
Yuhan Zhu, Jia Wei, Jun Li
通讯作者:
Jia Wei,E-mail:weij@bjut.edu.cn
基金资助:
Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals[J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103.
Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals[J]. 中国化学工程学报, 2023, 56(4): 97-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.06.015
[1] R.S. Kookana, The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review, Aust. J. Soil Res. 48 (2010) 627-637. [2] J.X. Wang, M. Zhao, J.E. Zhang, B.L. Zhao, X.N. Lu, H. Wei, Characterization and utilization of biochars derived from five invasive plant species Bidens pilosa L., Praxelis clematidea, Ipomoea cairica, Mikania micrantha and Lantana camara L. for Cd2+ and Cu2+ removal, J. Environ. Manage. 280 (2021) 111746. [3] X.X. Wang, Y.T. Dan, Y.Z. Diao, F.H. Liu, H. Wang, W.J. Sang, Transport and retention of microplastics in saturated porous media with peanut shell biochar (PSB) and MgO-PSB amendment: Co-effects of cations and humic acid, Environ. Pollut. 305 (2022) 119307. [4] P.A.D. Veiga, M.H. Cerqueira, M.G. Goncalves, T.T.d. SilvaMatos, G. Pantano, J. Schultz, J.B. de Andrade, A.S. Mangrich, Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced, J. Environ. Manage. 285 (2021) 112145. [5] E. Agrafioti, D. Kalderis, E. Diamadopoulos, Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge, J. Environ. Manage. 133 (2014) 309-314. [6] J. Wei, Y.T. Liu, J. Li, Y.H. Zhu, H. Yu, Y.Z. Peng, Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar, Chemosphere 236 (2019) 124254. [7] M. Khadem, A.H. Ibrahim, I. Mokashi, A.H. Fahmi, S.N. Taqui, V. Mohanavel, N. Hossain, I.B. Koki, A. Elfasakhany, M.A.H. Dhaif-Allah, M.E.M. Soudagar, A.A. Syed, Removal of heavy metals from wastewater using low-cost biochar prepared from jackfruit seed waste, Biomass Conv. Bioref. (2022) https://doi.org/10.1007/s13399-13022-02748-y. [8] Z.L. Chen, J.Q. Zhang, L. Huang, Z.H. Yuan, Z.J. Li, M.C. Liu, Removal of Cd and Pb with biochar made from dairy manure at low temperature, J. Integr. Agr. 18 (2019) 201-210. [9] W.L. Feng, Y.F. Zhang, L.L. Huang, Y.L. Li, Q.K. Guo, H.Y. Peng, L. Shi, Spatial distribution, pollution characterization, and risk assessment of environmentally persistent free radicals in urban road dust from central China, Environ. Pollut. 298 (2022) 118861. [10] A.L.N. dela Cruz, W. Gehling, S. Lomnicki, R. Cook, B. Dellinger, Detection of environmentally persistent free radicals at a superfund wood treating site, Environ. Sci. Technol. 45 (2011) 6356-6365. [11] W.Z. He, Y. Zhu, G.M. Zeng, Y. Zhang, Y.R. Wang, M.J. Zhang, H. Long, W.W. Tang, Efficient removal of perfluorooctanoic acid by persulfate advanced oxidative degradation: inherent roles of iron-porphyrin and persistent free radicals, Chem. Eng. J. 392 (2020) 123640. [12] Y.F. Shi, K.C. Zhu, Y.C. Dai, C. Zhang, H.Z. Jia, Evolution and stabilization of environmental persistent free radicals during the decomposition of lignin by laccase, Chemosphere 248 (2020) 125931. [13] N. Zhao, Z. Yin, F. Liu, M.Y. Zhang, Y.Z. Lv, Z.P. Hao, G. Pan, J. Zhang, Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars, Bioresour. Technol. 260 (2018) 294-301. [14] Q.C. Chen, H.Y. Sun, Z. Mu, Y.Q. Wang, Y.G. Li, L.X. Zhang, M.M. Wang, Z.M. Zhang, Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China, Environ. Pollut. 247 (2019) 18-26. [15] B. Jiang, D.J. Dai, Y.Y. Yao, T.F. Xu, R.H. Li, R.J. Xie, L.K. Chen, W.X. Chen, The coupling of hemin with persistent free radicals induces a nonradical mechanism for oxidation of pollutants, Chem. Commun. 52 (2016) 9566-9569. [16] Y. Zhang, X. Guo, X.H. Si, R.X. Yang, J.T. Zhou, X. Quan, Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria, Sci. Total Environ. 687 (2019) 348-354. [17] Y.X. Qin, G.Y. Li, Y.P. Gao, L.Z. Zhang, Y.S. Ok, T.C. An, Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review, Water Res. 137 (2018) 130-143. [18] J. Yang, B. Pan, H. Li, S.H. Liao, D. Zhang, M. Wu, B.S. Xing, Degradation of p-nitrophenol on biochars: Role of persistent free radicals, Environ. Sci. Technol. 50 (2016) 694-700. [19] E.S. Odinga, M.G. Waigi, F.O. Gudda, J. Wang, B. Yang, X.J. Hu, S.Y. Li, Y.Z. Gao, Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars, Environ. Int. 134 (2020) 105172. [20] J. Saravia, G.I. Lee, S. Lomnicki, B. Dellinger, S.A. Cormier, Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: A review, J. Biochem. Mol. Toxicol. 27 (2013) 56-68. [21] J.B. Liu, H.Z. Jia, K.C. Zhu, S. Zhao, E. Lichtfouse, Formation of environmentally persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated by polycyclic aromatic hydrocarbons, Environ. Chem. Lett. 18 (2020) 1329-1336. [22] Y.H. Zhu, J. Wei, Y.T. Liu, X.H. Liu, J. Li, J. Zhang, Assessing the effect on the generation of environmentally persistent free radicals in hydrothermal carbonization of sewage sludge, Sci. Rep. 9 (2019) 492-512. [23] P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J. Colloid Interface Sci. 302 (2006) 408-416. [24] S.Q. Shi, J.K. Yang, S. Liang, M.Y. Li, Q. Gan, K.K. Xiao, J.P. Hu, Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles, Sci. Total Environ. 628-629 (2018) 499-508. [25] Y.H. Zhang, X.M. Xu, C.L. Yue, L. Song, Y.Z. Lv, F.Q. Liu, A.M. Li, Insight into the efficient co-removal of Cr(VI) and Cr(III) by positively charged UiO-66-NH2 decorated ultrafiltration membrane, Chem. Eng. J. 404 (2021) 126546. [26] Z. Kozmér, E. Takács, L. Wojnárovits, T. Alapi, K. Hernádi, A. Dombi, The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol, Radiat. Phys. Chem. 124 (2016) 52-57. [27] Y. Meng, X.X. Ma, F.B. Luan, Z.W. Zhao, Y. Li, X. Xiao, Q.Q. Wang, J.D. Zhang, S.M. Thandar, Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria, Sci. Total Environ. 812 (2022) 152433. [28] T. Chen, Z.Y. Zhou, S. Xu, H.T. Wang, W.J. Lu, Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge, Bioresour. Technol. 190 (2015) 388-394. [29] D. Mohan, S. Rajput, V.K. Singh, P.H. Steele, C.U. Pittman, Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent, J. Hazard. Mater. 188 (2011) 319-333. [30] H. Deveci, Y. Kar, Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis, J. Ind. Eng. Chem. 19 (2013) 190-196. [31] Y.Y. Sun, Q.Y. Yue, Y.P. Mao, B.Y. Gao, L.H. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater. 265 (2014) 191-200. [32] G. Tian, J.X. Geng, Y.D. Jin, C.L. Wang, S.Q. Li, Z. Chen, H. Wang, Y.S. Zhao, S.J. Li, Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5, J. Hazard. Mater. 190 (2011) 442-450. [33] J.F. Xiao, Y.P. Cheng, C.X. Guo, X.T. Liu, B. Zhang, S.G. Yuan, J.J. Huang, Novel functional fiber loaded with carbon dots for the deep removal of Cr(VI) by adsorption and photocatalytic reduction, J. Environ. Sci. 83 (2019) 195-204. [34] J.E. Kim, S.K. Bhatia, H.J. Song, E. Yoo, H.J. Jeon, J.Y. Yoon, Y. Yang, R. Gurav, Y.H. Yang, H.J. Kim, Y.K. Choi, Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar, Bioresour. Technol. 306 (2020) 123092. [35] Y. Huang, K. Song, W. Luo, J.W. Yang, Adsorption and reduction of Cr(VI) by hydroxylated multiwalled carbon nanotubes: Effects of humic acid and surfactants, Environ. Sci. Pollut. Res. 27 (2020) 12746-12754. [36] T. Wang, L.Y. Zhang, C.F. Li, W.C. Yang, T.T. Song, C.J. Tang, Y. Meng, S. Dai, H.Y. Wang, L.Y. Chai, J. Luo, Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption, Environ. Sci. Technol. 49 (2015) 5654-5662. [37] L. Yang, J.P. Chen, Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp., Bioresour. Technol. 99 (2008) 297-307. [38] G. Choppala, N. Bolan, A. Kunhikrishnan, R. Bush, Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate, Chemosphere 144 (2016) 374-381. [39] L.C.A. Melo, A.R. Coscione, C.A. Abreu, A.P. Puga, O.A. Camargo, Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw–derived biochar, BioResources 8 (2013) 4992-5004. [40] Y.J. Chen, L. Zhang, Y.T. Zhang, A.M. Li, Pressurized pyrolysis of sewage sludge: Process performance and products characterization, J. Anal. Appl. Pyrolysis 139 (2019) 205-212. [41] Z. Droussi, V. D'orazio, M.R. Provenzano, M. Hafidi, A. Ouatmane, Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry, J. Hazard. Mater. 164 (2009) 1281-1285. [42] M.K. Hossain, V. Strezov, K.Y. Chan, A. Ziolkowski, P.F. Nelson, Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar, J. Environ. Manage. 92 (2011) 223-228. [43] H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection, ACS Appl. Mater. Inter. 3 (2011) 3049-3057. [44] J. Wei, Y.T. Liu, Y.H. Zhu, J. Li, Enhanced catalytic degradation of tetracycline antibiotic by persulfate activated with modified sludge bio-hydrochar, Chemosphere 247 (2020) 125854. [45] S.Z. Wang, J.L. Wang, Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater, Chem. Eng. J. 356 (2019) 350-358. [46] J. Xu, Y.C. Dai, Y.F. Shi, S.X. Zhao, H.X. Tian, K.C. Zhu, H.Z. Jia, Mechanism of Cr(VI) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species, Sci. Total Environ. 725 (2020) 138413. [47] X.Y. Xu, H. Huang, Y. Zhang, Z.B. Xu, X.D. Cao, Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption, Environ. Pollut. 244 (2019) 423-430. [48] Y. Cui, B.W. Xu, B. Yang, H.F. Yao, S.S. Li, J.H. Hou, A novel pH neutral self-doped polymer for anode interfacial layer in efficient polymer solar cells, Macromolecules 49 (2016) 8126-8133. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[3] | Junyu Chen, Yu Yang, Yuzheng Pan, Yang You, Liwen Hu, Meilong Hu. Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 202-213. |
[4] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[5] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[6] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[7] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[8] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[9] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[10] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[11] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[12] | Shanshan Xu, Qilei Zhang, Dongmei Bai, Linian Cai, Tao Lu, Shanjing Yao. Removal process and mechanism of hexavalent chromium by adsorption-coupled reduction with marine-derived Aspergillus niger mycelial pellets [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 198-204. |
[13] | Jiancheng Shu, Xiangfei Zeng, Danyang Sun, Yong Yang, Zuohua Liu, Mengjun Chen, Daoyong Tan. Enhanced Mn2+ solidification and NH4+-N removal from electrolytic manganese metal residue via surfactants [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 205-212. |
[14] | Wei Hong, Xinran Shen, Jian Wang, Xin Feng, Wenjing Zhang, Jing Li, Zidong Wei. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 30-35. |
[15] | Xinyu Lu, Dandan Wang, Haoquan Guo, Pengcheng Xiu, Jiajia Chen, Yu Qin, Hossain Mahmud Robin, Chaozhong Xu, Xingguang Zhang, Xiaoli Gu. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 191-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||