[1] J.A. Barreto, W. O'Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, Nanomaterials: Applications in cancer imaging and therapy, Adv. Mater. 23 (12) (2011) H18–H40. [2] M. Gao, F.B. Yu, C.J. Lv, J. Choo, L.X. Chen, Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy, Chem. Soc. Rev. 46 (8) (2017) 2237–2271. [3] G.X. Feng, D. Ding, K. Li, J. Liu, B. Liu, Reversible photoswitching conjugated polymer nanoparticles for cell and ex vivo tumor imaging, Nanoscale 6 (8) (2014) 4141–4147. [4] Y. Zou, T. Yi, S.Z. Xiao, F.Y. Li, C.Y. Li, X. Gao, J.C. Wu, M.X. Yu, C.H. Huang, Amphiphilic diarylethene as a photoswitchable probe for imaging living cells, J. Am. Chem. Soc. 130 (47) (2008) 15750–15751. [5] I. Yildiz, S. Impellizzeri, E. Deniz, B. McCaughan, J.F. Callan, F.M. Raymo, Supramolecular strategies to construct biocompatible and photoswitchable fluorescent assemblies, J. Am. Chem. Soc. 133 (4) (2011) 871–879. [6] M.Q. Zhu, G.F. Zhang, Z. Hu, M.P. Aldred, C. Li, W.L. Gong, T. Chen, Z.L. Huang, S.Y. Liu, Reversible fluorescence switching of spiropyran-conjugated biodegradable nanoparticles for super-resolution fluorescence imaging, Macromolecules 47 (5) (2014) 1543–1552. [7] K. Peng, F.T. Lv, H. Lu, J.W. Wang, H. Zhao, L.B. Liu, S. Wang, Conjugated polymer nanoparticles as fluorescence switch for selective cell imaging, Chin. Chem. Lett. 31 (3) (2020) 755–758. [8] Z.Y. Li, C.J. He, Z.Q. Lu, P.S. Li, Y.P. Zhu, Recent progress in all-visible-light-triggered diarylethenes, Dyes Pigments 182 (2020) 108623. [9] G.Z. Yang, Y. Liu, J.S. Teng, C.X. Zhao, FRET ratiometric nanoprobes for nanoparticle monitoring, Biosensors 11 (12) (2021) 505. [10] J. Su, T. Fukaminato, J.P. Placial, T. Onodera, R. Suzuki, H. Oikawa, A. Brosseau, F. Brisset, R. Pansu, K. Nakatani, R. Métivier, Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles, Angew. Chem. Int. Ed Engl. 55 (11) (2016) 3662–3666. [11] T. Fukaminato, S. Ishida, R. Métivier, Photochromic fluorophores at the molecular and nanoparticle levels: Fundamentals and applications of diarylethenes, NPG Asia Mater. 10 (9) (2018) 859–881. [12] Y.C. Yuan, H. Zhu, Y. Nagaoka, R. Tan, A.H. Davis, W.W. Zheng, O. Chen, Reversible photo-switching of dual-color fluorescent Mn-doped CdS-ZnS quantum dots modulated by diarylethene molecules, Front. Chem. 7 (2019) 145. [13] M.L. Yu, P.S. Zhang, L. Liu, H. Wang, H. Wang, C.H. Zhang, Y. Gao, C.L. Yang, J.X. Cui, J. Chen, Reversibly photoswitchable tristate fluorescence within a single polymeric nanoparticle, Adv. Opt. Mater. 9 (22) (2021) 2101227. [14] J.J. Zhang, H. Tian, The endeavor of diarylethenes: New structures, high performance, and bright future, Adv. Opt. Mater. 6 (6) (2018) 1701278. [15] I. Ikariko, S. Deguchi, N. Fabre, S. Ishida, S. Kim, S. Kurihara, R. Métivier, T. Fukaminato, Highly-stable red-emissive photochromic nanoparticles based on a diarylethene-perylenebisimide dyad, Dyes Pigments 180 (2020) 108490. [16] T.S. Yang, Q. Liu, S.Z. Pu, Z.S. Dong, C.H. Huang, F.Y. Li, Fluorophore-photochrome co-embedded polymer nanoparticles for photoswitchable fluorescence bioimaging, Nano Res. 5 (7) (2012) 494–503. [17] M.Q. Zhu, L.Y. Zhu, J.J. Han, W.W. Wu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence, J. Am. Chem. Soc. 128 (13) (2006) 4303–4309. [18] B.K. Johnson, R.K. Prud'homme, Flash NanoPrecipitation of organic actives and block copolymers using a confined impinging jets mixer, Aust. J. Chem. 56 (10) (2003) 1021. [19] B.K. Johnson, R.K. Prud'homme, Mechanism for rapid self-assembly of block copolymer nanoparticles, Phys. Rev. Lett. 91 (11) (2003) 118302. [20] Z.N. Fu, L. Li, M.W. Wang, X.H. Guo, Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation, Colloid Polym. Sci. 296 (5) (2018) 935–940. [21] M.W. Wang, S. Lin, J.Y. Wang, L. Liu, W.J. Zhou, R. Ahmed, A.G. Hu, X.H. Guo, M.A. Cohen Stuart, Controlling morphology and release behavior of sorafenib-loaded nanocarriers prepared by flash nanoprecipitation, Ind. Eng. Chem. Res. 57 (35) (2018) 11911–11919. [22] Y. Liu, G.Z. Yang, D. Zou, Y. Hui, K. Nigam, A.P.J. Middelberg, C.X. Zhao, Formulation of nanoparticles using mixing-induced nanoprecipitation for drug delivery, Ind. Eng. Chem. Res. 59 (9) (2020) 4134–4149. [23] S.L. Levit, H. Yang, C. Tang, Rapid self-assembly of polymer nanoparticles for synergistic codelivery of paclitaxel and lapatinib via flash NanoPrecipitation, Nanomaterials (Basel) 10 (3) (2020) 561. [24] Z. Chen, Z.N. Fu, L. Li, E.G. Ma, X.H. Guo, A cost-effective nano-sized curcumin delivery system with high drug loading capacity prepared via flash nanoprecipitation, Nanomaterials (Basel) 11 (3) (2021) 734. [25] M.E. Gindy, A.Z. Panagiotopoulos, R.K. Prud'homme, Composite block copolymer stabilized nanoparticles: Simultaneous encapsulation of organic actives and inorganic nanostructures, Langmuir 24 (1) (2008) 83–90. [26] M. Akbulut, P. Ginart, M.E. Gindy, C. Theriault, K.H. Chin, W. Soboyejo, R.K. Prud'homme, Generic method of preparing multifunctional fluorescent nanoparticles using flash NanoPrecipitation, Adv. Funct. Mater. 19 (5) (2009) 718–725. [27] Y.Z. He, R.D. Priestley, R. Liu, A one-step and scalable continuous-flow nanoprecipitation for catalytic reduction of organic pollutants in water, Ind. Eng. Chem. Res. 55 (37) (2016) 9851–9856. [28] M.J. Yu, W.W. Zhang, Z.Q. Guo, Y.Z. Wu, W.H. Zhu, Engineering nanoparticulate organic photocatalysts via a scalable flash nanoprecipitation process for efficient hydrogen production, Angewandte Chemie 133 (28) (2021) 15718–15725. [29] X.J. Jia, Y.F. Yan, A.B. Kayitmazer, Y.S. Li, Y.S. Xu, Scalable yielding of highly stable polyelectrolyte-coated copper sulfide nanoparticles by flash nanoprecipitation for photothermal-chemotherapeutics, Adv. Funct. Mater. 31 (32) (2021) 2100452. [30] J. Han, Z.X. Zhu, H.T. Qian, A.R. Wohl, C.J. Beaman, T.R. Hoye, C.W. Macosko, A simple confined impingement jets mixer for flash nanoprecipitation, J. Pharm. Sci. 101 (10) (2012) 4018–4023. [31] Z.X. Zhu, P. Xu, G.K. Fan, N.N. Liu, S.Q. Xu, X.L. Li, H.G. Xue, C.H. Shao, Y.L. Guo, Fast synthesis and separation of nanoparticles via in situ reactive flash nanoprecipitation and pH tuning, Chem. Eng. J. 356 (2019) 877–885. [32] Y. Liu, C. Cheng, Y. Liu, R.K. Prud’homme, R.O. Fox, Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation, Chem. Eng. Sci. 63 (11) (2008) 2829–2842. [33] H. Shen, S. Hong, R.K. Prud’homme, Y. Liu, Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles, J. Nanoparticle Res. 13 (9) (2011) 4109–4120. [34] J. Tao, S.F. Chow, Y. Zheng, Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles, Acta Pharm. Sin. B 9 (1) (2019) 4–18. [35] M. Li, Y.S. Xu, J.L. Sun, M.W. Wang, D.H. Yang, X.H. Guo, H.Y. Song, S. Cao, Y.F. Yan, Fabrication of charge-conversion nanoparticles for cancer imaging by flash nanoprecipitation, ACS Appl. Mater. Interfaces 10 (13) (2018) 10752–10760. [36] B. Qin, R.X. Yao, X.L. Zhao, H. Tian, Enhanced photochromism of 1, 2-dithienylcyclopentene complexes with metal ion, Org. Biomol. Chem. 1 (12) (2003) 2187–2191. [37] Y.T. Tam, K.K. To, A.H. Chow, Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery, Colloids Surf. B Biointerfaces 139 (2016) 249–258. [38] Z.X. Zhu, Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure, Mol. Pharm. 11 (3) (2014) 776–786. [39] M.P. Desai, V. Labhasetwar, E. Walter, R.J. Levy, G.L. Amidon, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharm. Res. 14 (11) (1997) 1568–1573. [40] K.M. Pustulka, A.R. Wohl, H.S. Lee, A.R. Michel, J. Han, T.R. Hoye, A.V. McCormick, J. Panyam, C.W. Macosko, Flash nanoprecipitation: Particle structure and stability, Mol. Pharm. 10 (11) (2013) 4367–4377. [41] S.S. Song, F.Y. Xia, S.Q. Huang, X.M. Wang, Study on e-type delayed fluorescence of carbazole derivatives, Journal of Suzhou University of Science and Technology. 36 (4) (2019) 28-34. [42] Y.J. Zhan, S.T. Yang, L.F. Chen, Y.B. Zeng, L. Li, Z.Y. Lin, L.H. Guo, W. Xu, Ultrahigh efficient FRET ratiometric fluorescence biosensor for visual detection of alkaline phosphatase activity and its inhibitor, ACS Sustainable Chem. Eng. 9 (38) (2021) 12922–12929. |