Chinese Journal of Chemical Engineering ›› 2023, Vol. 57 ›› Issue (5): 290-308.DOI: 10.1016/j.cjche.2022.09.020
Previous Articles Next Articles
Jixiang Liu1, Xin Zhou1,2, Gengfei Yang1, Hui Zhao1, Zhibo Zhang1, Xiang Feng1, Hao Yan1, Yibin Liu1, Xiaobo Chen1, Chaohe Yang1
Received:
2022-06-24
Revised:
2022-09-18
Online:
2023-07-08
Published:
2023-05-28
Contact:
Xin Zhou,E-mail:xinzhou@ouc.edu.cn;Hui Zhao,E-mail:zhaohui@upc.edu.cn
Supported by:
Jixiang Liu1, Xin Zhou1,2, Gengfei Yang1, Hui Zhao1, Zhibo Zhang1, Xiang Feng1, Hao Yan1, Yibin Liu1, Xiaobo Chen1, Chaohe Yang1
通讯作者:
Xin Zhou,E-mail:xinzhou@ouc.edu.cn;Hui Zhao,E-mail:zhaohui@upc.edu.cn
基金资助:
Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308.
Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308.
[1] I. Amghizar, L.A. Vandewalle, K.M.V. Geem, G.B. Marin, New trends in olefin production, Engineering 3 (2) (2017) 171–178.Doi: 10.1016/J.ENG.2017.02.006 [2] S.S. Haghighi, M.R. Rahimpour, S. Raeissi, O. Dehghani, Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide, Chem. Eng. J. 228 (2013) 1158–1167.Doi: 10.1016/j.cej.2013.05.048 [3] J.M. Chen, B.Y. Yu, Y.M. Wei, Energy technology roadmap for ethylene industry in China, Appl. Energy 224 (2018) 160–174.Doi: 10.1016/j.apenergy.2018.04.051 [4] T. Wang, Z.C. Ye, X.J. Wang, Z.M. Li, W.L. Du, Improved distributed optimization algorithm and its application in energy saving of ethylene plant, Chem. Eng. Sci. 251 (2022) 117449.Doi: 10.1016/j.ces.2022.117449 [5] T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes, Energy 31 (4) (2006) 425–451.Doi: 10.1016/j.energy.2005.04.001 [6] I. Amghizar, J.N. Dedeyne, D.J. Brown, G.B. Marin, K.M. van Geem, Sustainable innovations in steam cracking: CO2 neutral olefin production, React. Chem. Eng. 5 (2) (2020) 239–257.Doi: 10.1039/c9re00398c [7] G.S. Guo, Y. Ren, Y.B. Yu, Z.W. Liao, B.B. Jiang, Y. Yang, G.J. He, W.J. Fang, J.D. Wang, Y.R. Yang, Hyperbranched poly(amidoamine) as an efficient macroinitiator for steam cracking of naphtha, Fuel 299 (2021) 120907.Doi: 10.1016/j.fuel.2021.120907 [8] X.X. Zhu, F.C. Chen, J. An, P. Zeng, L.Y. Xu, Development and industrialization of the ethylbenzene production technologies from dilute ethylene in FCC dry gas, Adv. Mater. Res. 233-235 (2011) 1708–1713.Doi: 10.4028/www.scientific.net/amr.233-235.1708 [9] J.L. Zhang, Q.C. Yang, Y.J. Fan, D.W. Zhang, J.H. Yu, Conceptual design and techno-economic analysis of a coproduction system for ethylene glycol and LNG from steel mill off-gases, Fuel 318 (2022) 123693.Doi: 10.1016/j.fuel.2022.123693 [10] Y.W. Wang, B. Yang, Z.Q. Liu, Z.Q. Liu, Q. Sun, A.X. Liu, X.X. Li, W.J. Lan, L.Y. Yang, X.Q. Guo, The hydrate-based gas separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of Poly (sodium 4-styrenesulfonate), Fuel 275 (2020) 117895.Doi: 10.1016/j.fuel.2020.117895 [11] X.Y. Hou, J.S. Zhang, D.F. Li. Overview of C2 Recovery Technology in Refinery Dry Gas. Green Pet. Petrochem. 6 (01) (2021) 11-18. [12] Y.J. Li, H. Luo, Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization, Chem. Eng. Res. Des. 93 (2015) 632–639.Doi: 10.1016/j.cherd.2014.04.009 [13] L.W. Zhang, G.J. Chen, C.Y. Sun, S.S. Fan, Y.M. Ding, X.L. Wang, L.Y. Yang, The partition coefficients of ethylene between hydrate and vapor for methane + ethylene + water and methane + ethylene + SDS + water systems, Chem. Eng. Sci. 60 (19) (2005) 5356–5362.Doi: 10.1016/j.ces.2005.05.014 [14] M.B. Yang, S.Y. Zeng, X. Feng, L. Zhao, Simulation-based modeling and optimization for refinery hydrogen network integration with light hydrocarbon recovery, Int. J. Hydrog. Energy 47 (7) (2022) 4662–4673.Doi: 10.1016/j.ijhydene.2021.11.069 [15] G.R. Yu, L. Zhang, I.A. Alhumaydhi, A.A. Abdeltawab, A.A. Bagabas, H.A. Al-Megren, S.S. Al-Deyab, X.C. Chen, Separation of propylene and propane by alkylimidazolium thiocyanate ionic liquids with Cu+ salt, Sep. Purif. Technol. 156 (2015) 356–362.Doi: 10.1016/j.seppur.2015.10.022 [16] T.L. Saleman, G. Li, T.E. Rufford, P.L. Stanwix, K.I. Chan, S.H. Huang, E.F. May, Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption, Chem. Eng. J. 281 (2015) 739–748.Doi: 10.1016/j.cej.2015.07.001 [17] X. Duan, Q. Zhang, J.F. Cai, Y. Yang, Y.J. Cui, Y.B. He, C.D. Wu, R. Krishna, B.L. Chen, G.D. Qian, A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments, J. Mater. Chem. A 2 (8) (2014) 2628.Doi: 10.1039/c3ta14454b [18] C.X. Xu, J. Zhang, H. Dinh, Q. Xu, Process synthesis of mixed refrigerant system for ethylene plants, Ind. Eng. Chem. Res. 56 (28) (2017) 7984–7999.Doi: 10.1021/acs.iecr.7b00111 [19] J. Wang, Y.L. He, Q.X. Zhu, Energy and production efficiency optimization of an ethylene plant considering process operation and structure, Ind. Eng. Chem. Res. 59 (3) (2020) 1202–1217.Doi: 10.1021/acs.iecr.9b05315 [20] X.G. Li, J. Wang, S. Cong, X.B. Luo, M.H. Wang, H. Li. Development and simulation of a novel oil absorption process for recovering ethylene from refinery dry gas. Chem. Eng. (China) 44 (02) (2016) 1-6. [21] Y.W. Wang, J.H. Zhang, X.Q. Guo, B. Chen, Q. Sun, A.X. Liu, C.Y. Sun, G.J. Chen, L.Y. Yang, Experiments and modeling for recovery of hydrogen and ethylene from fluid catalytic cracking (FCC) dry gas utilizing hydrate formation, Fuel 209 (2017) 473–489.Doi: 10.1016/j.fuel.2017.07.108 [22] H. Liu, L. Mu, B. Wang, B. Liu, J. Wang, X.X. Zhang, C.Y. Sun, J. Chen, M.L. Jia, G.J. Chen, Separation of ethylene from refinery dry gas via forming hydrate in w/o dispersion system, Sep. Purif. Technol. 116 (2013) 342–350.Doi: 10.1016/j.seppur.2013.06.008 [23] X.B. Luo, M.H. Wang, X.G. Li, Y. Li, C. Chen, H. Sui, Modelling and process analysis of hybrid hydration-absorption column for ethylene recovery from refinery dry gas, Fuel 158 (2015) 424–434.Doi: 10.1016/j.fuel.2015.05.035 [24] C.F. Song, Q.L. Liu, N. Ji, S. Deng, J. Zhao, Y. Kitamura, Natural gas purification by heat pump assisted MEA absorption process, Appl. Energy 204 (2017) 353–361.Doi: 10.1016/j.apenergy.2017.07.052 [25] X. Li, X.L. Geng, P.Z. Cui, J.W. Yang, Z.Y. Zhu, Y.L. Wang, D.M. Xu, Thermodynamic efficiency enhancement of pressure-swing distillation process via heat integration and heat pump technology, Appl. Therm. Eng. 154 (2019) 519–529.Doi: 10.1016/j.applthermaleng.2019.03.118 [26] N.G. Wang, Q. Ye, X.X. Ren, L.J. Chen, H.X. Zhang, Y.F. Fan, H. Cen, J. Zhong, Performance enhancement of heat pump with preheater-assisted pressure-swing distillation process, Ind. Eng. Chem. Res. 59 (10) (2020) 4742–4755.Doi: 10.1021/acs.iecr.9b06918 [27] H. Luo, C.S. Bildea, A.A. Kiss, Novel heat-pump-assisted extractive distillation for bioethanol purification, Ind. Eng. Chem. Res. 54 (7) (2015) 2208–2213.Doi: 10.1021/ie504459c [28] M.Q. Chen, N. Yu, L. Cong, J.X. Wang, M.Y. Zhu, L.Y. Sun, Design and control of a heat pump-assisted azeotropic dividing wall column for EDA/water separation, Ind. Eng. Chem. Res. 56 (34) (2017) 9770–9777.Doi: 10.1021/acs.iecr.7b02466 [29] X.X. Gao, Z.F. Ma, L.M. Yang, J.Q. Ma, Simulation and optimization of distillation processes for separating the methanol–chlorobenzene mixture with separate heat-pump distillation, Ind. Eng. Chem. Res. 52 (33) (2013) 11695–11701.Doi: 10.1021/ie401467r [30] S. Pandey, G.P. Rangaiah, Multiobjective optimization of cold-end separation process in an ethylene plant, Ind. Eng. Chem. Res. 52 (48) (2013) 17229–17240.Doi: 10.1021/ie4027764 [31] X. Zhou, Q. Zhai, C.L. Chen, H. Yan, X.B. Chen, H. Zhao, C.H. Yang, Technoeconomic analysis and life cycle assessment of five VGO processing pathways in China, Energy Fuels 33 (11) (2019) 12106–12120.Doi: 10.1021/acs.energyfuels.9b03253 [32] Q.Q. Chen, M. Lv, D.F. Wang, Z.Y. Tang, W. Wei, Y.H. Sun, Eco-efficiency assessment for global warming potential of ethylene production processes: a case study of China, J. Clean. Prod. 142 (2017) 3109–3116.Doi: 10.1016/j.jclepro.2016.10.156 [33] Y.M. Han, R.D. Zhou, Z.Q. Geng, J. Bai, B. Ma, J.Z. Fan, A novel data envelopment analysis cross-model integrating interpretative structural model and analytic hierarchy process for energy efficiency evaluation and optimization modeling: application to ethylene industries, J. Clean. Prod. 246 (2020) 118965.Doi: 10.1016/j.jclepro.2019.118965 [34] F.F. Shen, M.H. Wang, L.X. Huang, F. Qian, Exergy analysis and multi-objective optimisation for energy system: a case study of a separation process in ethylene manufacturing, J. Ind. Eng. Chem. 93 (2021) 394–406.Doi: 10.1016/j.jiec.2020.10.018 [35] F.M. Fábrega, J.S. Rossi, J.V.H. d'Angelo, Exergetic analysis of the refrigeration system in ethylene and propylene production process, Energy 35 (3) (2010) 1224–1231.Doi: 10.1016/j.energy.2009.11.001 [36] A. Palizdar, S.M. Sadrameli, Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant, Energy Convers. Manag. 138 (2017) 474–485.Doi: 10.1016/j.enconman.2017.02.019 [37] B.M. Dai, H.F. Qi, S.C. Liu, Z.F. Zhong, H.L. Li, M.J. Song, M.Y. Ma, Z.L. Sun, Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China, Energy Convers. Manag. 198 (2019) 111317.Doi: 10.1016/j.enconman.2019.01.119 [38] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya. Analysis, Synthesis and Design of Chemical Processes. Pearson Education Fourth Edition (2008). [39] J. Li, L.X. Li, R.C. Li, Z.K. Yang, Z.H. Ma, L.Y. Sun, N. Zhang, Investigation of multi-objective optimization for integrating design and control of ionic liquid-based extractive distillation, Chem. Eng. Res. Des. 170 (2021) 134–146.Doi: 10.1016/j.cherd.2021.04.002 [40] D. Xiang, P. Li, X.Y. Yuan, Energy consumption and CO2 emissions of petroleum coke-to-methanol with/without carbon capture using process modeling and life cycle analysis, Energy Convers. Manag. 248 (2021) 114823.Doi: 10.1016/j.enconman.2021.114823 [41] A.A. Burgess, D.J. Brennan, Application of life cycle assessment to chemical processes, Chem. Eng. Sci. 56 (8) (2001) 2589–2604.Doi: 10.1016/S0009-2509(00)00511-X [42] N. Zhao, F.Q. You, Toward carbon-neutral electric power systems in the New York State: a novel multi-scale bottom-up optimization framework coupled with machine learning for capacity planning at hourly resolution, ACS Sustainable Chem. Eng. 10 (5) (2022) 1805–1821.Doi: 10.1021/acssuschemeng.1c06612 [43] A.F. Abd Rashid, S. Yusoff, A review of life cycle assessment method for building industry, Renew. Sustain. Energy Rev. 45 (2015) 244–248.Doi: 10.1016/j.rser.2015.01.043 [44] M.B. Yang, X.Y. Tian, F.Q. You, Manufacturing ethylene from wet shale gas and biomass: comparative technoeconomic analysis and environmental life cycle assessment, Ind. Eng. Chem. Res. 57 (17) (2018) 5980–5998.Doi: 10.1021/acs.iecr.7b03731 [45] M.B. Yang, F.Q. You, Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha, Ind. Eng. Chem. Res. 56 (14) (2017) 4038–4051.Doi: 10.1021/acs.iecr.7b00354 [46] L. Lv, G.B. Song, X.Y. Zhao, J.W. Chen, Environmental Burdens of China's Propylene manufacturing: comparative life-cycle assessment and scenario analysis, Sci. Total. Environ. 799 (2021) 149451.Doi: 10.1016/j.scitotenv.2021.149451 [47] X. Zhou, H. Yan, X. Feng, H. Zhao, Y.B. Liu, X.B. Chen, C.H. Yang, Enhancing the conversion of polycyclic aromatic hydrocarbons from naphthenic heavy oil: novel process design, comparative techno-economic analysis, and life cycle assessment, Ind. Eng. Chem. Res. 59 (45) (2020) 20086–20101.Doi: 10.1021/acs.iecr.0c03198 [48] G. Towler, R. Sinnott, Chemical engineering design: principles, practice, and economics of plant and process design, Elsevier 2nd ed (2013) 113-114. |
[1] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[2] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[3] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[4] | Jun Zhang, Qin Wang, Weifeng Shen. Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 115-125. |
[5] | Danlei Chen, Yiqing Luo, Xigang Yuan. Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 412-422. |
[6] | Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 75-93. |
[7] | Yanping Duan, Pengfei Wang, Wenge Yang, Xia Zhao, Hong Hao, Ruijie Wu, Jie Huang. Experimental and density functional theory computational evaluation of poly(N-vinyl caprolactam-co-butyl methacrylate) kinetic hydrate inhibitors [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 237-244. |
[8] | Xutao Hu, Hao Qin, Biao Hu, Hongye Cheng, Lifang Chen, Zhiwen Qi. A rate-based method for dynamic analysis and optimal design of reactive extraction: n-Hexyl acetate esterification as an example [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 76-83. |
[9] | Aihong Li, Changzhan Liu, Zhiyong Liu. A heuristic design method for batch water-using networks of multiple contaminants with regeneration unit [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1103-1112. |
[10] | Andrey Oliveira de Souza, Aurélio Moreira Luiz, Antônio Tavernard Pereira Neto, Antônio Carlos Brandao de Araujo, Heleno Bispo da Silva, Sidinei Kebler da Silva, Jose Jailson Nicacio Alves. CFD predictions for hazardous area classification [J]. Chin.J.Chem.Eng., 2019, 27(1): 21-31. |
[11] | Tao Yang, Yiqing Luo, Yingjie Ma, Xigang Yuan. Optimal synthesis of compression refrigeration system using a novel MINLP approach [J]. Chin.J.Chem.Eng., 2018, 26(8): 1662-1669. |
[12] | Lin Wang, Xianzuo Kong, Yongsheng Qi. Optimal design for split-and-recombine-type flow distributors of microreactors based on blockage detection [J]. , 2016, 24(7): 897-903. |
[13] | Pei Sun, Lei Xie, Junghui Chen. Spatial batch optimal design based on self-learning gaussian process models for LPCVD processes [J]. Chin.J.Chem.Eng., 2015, 23(12): 1958-1964. |
[14] | Binghu Li, Kuaikuai Guo, Changsheng Liu. Effect of PSA tin plating process on trace lead in tin coating [J]. Chin.J.Chem.Eng., 2015, 23(10): 1716-1720. |
[15] | WU Xianli, HU Yangdong, WU Lianying, LI Hong. Model and Design of Cogeneration System for Different Demands of Desalination Water, Heat and Power Production [J]. Chin.J.Chem.Eng., 2014, 22(3): 330-338. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 125
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||