[1] K.S. Williamson, D.J. Michaelis, T.P. Yoon, Advances in the chemistry of oxaziridines, Chem. Rev. 114 (16) (2014) 8016–8036. [2] V. Ji Ram, A. Sethi, M. Nath, R.Pratap, Three-membered ring heterocycles. The Chemistry of Heterocycles. Amsterdam: Elsevier, 2019: 19–92. [3] F.A. Davis, Adventures in sulfur-nitrogen chemistry, J. Org. Chem. 71 (24) (2006) 8993–9003. [4] F.A. Davis, bang chi Chen, Asymmetric hydroxylation of enolates with N-sulfonyloxaziridines, Chem. Rev. 92 (5) (1992) 919–934. [5] V.A. Petrov, G. Resnati, Polyfluorinated oxaziridines: synthesis and reactivity, Chem. Rev. 96 (5) (1996) 1809–1824. [6] A.R. Katritzky, P. Barczynski, D.L. Ostercamp, T.I.Yousaf, Mechanisms of heterocyclic ring formations. 4. A carbon-13 NMR study of the reaction of.beta.-keto esters with hydroxylamine, J. Org. Chem. 51 (21) (1986) 4037–4042. [7] H. Gao, Z. Zhou, D.H. Kwon, J. Coombs, S. Jones, N.E. Behnke, D.H. Ess, L. Kürti, Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds, Nat. Chem. 9 (7) (2017) 681–688. [8] S. Andreae, E.Schmitz, Electrophilic aminations with oxaziridines, Synthesis 1991 (5) (1991) 327–341. [9] S. Andreae, E. Schmitz, J.P. Wulf, B.Schulz, Electrophile aminierung von C-H-aciden verbindungen mit 1-oxa-2-azaspiro[2.5]octan, Liebigs Ann. Chem. 1992 (3) (1992) 239–256. [10] W.D.Emmons, The synthesis of oxaziranes, J. Am. Chem. Soc. 78 (23) (1956) 6208–6209. [11] E. Schmitz, R. Ohme, S.Schramm, Isomere oxime mit dreiringstruktur, Chem. Ber. 97 (9) (1964) 2521–2526. [12] E. Schmitz, R. Ohme, S. Schramm, H. Striegler, H.U. Heyne, J.Rusche, Cheminform abstract: studies on a new caprolactam synthesis. i. preparation of 3, 3-pentamethyleneoxaziridine from cyclohexanone and chloramine, Chemischer Informationsdienst 8 (25) (1977) no. [13] S. Andreae, E. Schmitz, 1-Oxa-2-azaspiro[2.5]octane, in: Encyclopedia of reagents for organic synthesis, Wiley, New York, 2001. [14] B. Gutmann, D. Cantillo, C.O.Kappe, Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients, Angew. Chem. Int. Ed. 54 (23) (2015) 6688–6728. [15] K.F.Jensen, Flow chemistry-Microreaction technology comes of age, AIChE J. 63 (3) (2017) 858–869. [16] K.F. Jensen, B.J. Reizman, S.G. Newman, Tools for chemical synthesis in microsystems, Lab Chip 14 (17) (2014) 3206–3212. [17] Volker, Hessel, Novel process windows - Concept, proposition and evaluation methodology, and intensified superheated processing, Chem. Eng. Sci. 66 (7) (2011) 1426–1448. [18] Zifei, Yan, Microreaction processes for synthesis and utilization of epoxides: a review, Chem. Eng. Sci. 229 (2021) 116071. [19] L. Chen, C. Yang, Y. Xiao, X. Yan, L. Hu, M. Eggersdorfer, D. Chen, D.A. Weitz, F.Ye, Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales, Mater. Today Nano 16 (2021) 100136. [20] J. Deng, J.S. Zhang, K. Wang, G.S.Luo, Microreaction technology for synthetic chemistry, Chin. J. Chem. 37 (2) (2019) 161–170. [21] Li, Chen, Morphology control of trimer particles via one-step co-precipitation and controlled phase separation, Chem. Eng. Sci. 251 (2022) 117432. [22] F.J. Wang, J.P. Huang, J.H.Xu, Continuous-flow synthesis of azo dyes in a microreactor system, Chem. Eng. Process. Process. Intensif. 127 (2018) 43–49. [23] T. Yang, F.J. Wang, J.P. Huang, D.L. Si, S.L. Liu, A.G. Zhang, Y.D. Wang, J.H. Xu, Efficient continuous-flow synthesis of long-chain alkylated naphthalene catalyzed by ionic liquids in a microreaction system, React. Chem. Eng. 6 (10) (2021) 1950–1960. [24] Funing, Sang, A circular microreaction method to the safe and efficient synthesis of 3-methylpyridine-N-oxide, Chin. J. Chem. Eng. 28 (5) (2020) 1320–1325. [25] J.P. Huang, F.N. Sang, G.S. Luo, J.H.Xu, Continuous synthesis of Gabapentin with a microreaction system, Chem. Eng. Sci. 173 (2017) 507–513. [26] F.J. Wang, A. Chen, S.D. Ling, J.H. Xu, Continuous-flow diazotization of red base KD hydrochloride suspensions in a microreaction system, React. Chem. Eng. 6 (8) (2021) 1462–1474. [27] J.S. Zhang, K. Wang, Y.C. Lu, G.S.Luo, Characterization and modeling of micromixing performance in micropore dispersion reactors, Chem. Eng. Process. Process. Intensif. 49 (7) (2010) 740–747. [28] J.S. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G.S. Luo, Design and scaling up of microchemical systems: a review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 285–305. [29] K. Wang, Y.C. Lu, G.S.Luo, Strategy for scaling-up of a microsieve dispersion reactor, Chem. Eng. Technol. 37 (12) (2014) 2116–2122. |