Chinese Journal of Chemical Engineering ›› 2023, Vol. 61 ›› Issue (9): 24-36.DOI: 10.1016/j.cjche.2023.03.018
Previous Articles Next Articles
Haoyu Yao1, Jiangcheng Li2, Jiangyan Li3, Xiangfeng Liang1, Gang Wang4, Haiyan Luo5
Received:
2023-01-11
Revised:
2023-03-18
Online:
2023-12-14
Published:
2023-09-28
Contact:
Xiangfeng Liang,E-mail:liangxf@qibebt.ac.cn;Gang Wang,E-mail:kjxywg@126.com;Haiyan Luo,E-mail:hyluo@ipe.ac.cn
Supported by:
Haoyu Yao1, Jiangcheng Li2, Jiangyan Li3, Xiangfeng Liang1, Gang Wang4, Haiyan Luo5
通讯作者:
Xiangfeng Liang,E-mail:liangxf@qibebt.ac.cn;Gang Wang,E-mail:kjxywg@126.com;Haiyan Luo,E-mail:hyluo@ipe.ac.cn
基金资助:
Haoyu Yao, Jiangcheng Li, Jiangyan Li, Xiangfeng Liang, Gang Wang, Haiyan Luo. Studies on polyoxymethylene dimethyl ethers production from dimethoxymethane and 1,3,5-trioxane over SO42-/ZrO2-TiO2[J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 24-36.
Haoyu Yao, Jiangcheng Li, Jiangyan Li, Xiangfeng Liang, Gang Wang, Haiyan Luo. Studies on polyoxymethylene dimethyl ethers production from dimethoxymethane and 1,3,5-trioxane over SO42-/ZrO2-TiO2[J]. 中国化学工程学报, 2023, 61(9): 24-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2023.03.018
[1] G. Kalghatgi, The outlook for fuels for internal combustion engines, Int. J. Engine Res. 15 (4) (2014): 383–398. [2] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (7411) (2012) 294–303. [3] A. Alagumalai, Internal combustion engines: Progress and prospects, Renew. Sustain. Energy Rev. 38 (2014) 561–571. [4] L. Lautenschuetz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus, J. Sauer, Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers, Fuel 173 (2016) (Jun.1)129–137. [5] Haoye, Liu, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends, Energy 88 (2015) 793–800. [6] H. Liu, Z. Wang, J. Zhang, J. Wang, S. Shuai, Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines, Appl. Energy 185 (2017) 1393–1402. [7] Jakob, Burger, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts, Fuel 89 (11) (2010) 3315–3319. [8] D. Deutsch, D. Oestreich, L. Lautenschütz, P. Haltenort, U. Arnold, J. Sauer, High purity oligomeric oxymethylene ethers as diesel fuels, Chemie Ingenieur Tech. 89 (4) (2017) 486–489. [9] D.Y. Han, Z.B. Cao, W.W. Shi, X.D. Deng, T.Y. Yang, Influence of polyoxymethylene dimethyl ethers on diesel fuel properties, Energy Sources A Recovery Util. Environ. Eff. 38 (18) (2016) 2687–2692. [10] Constantine, Arcoumanis, The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel 87 (7) (2008) 1014–1030. [11] R.Y. Sun, I. Delidovich, R.Palkovits, Dimethoxymethane as a cleaner synthetic fuel: Synthetic methods, catalysts, and reaction mechanism, ACS Catal. 9 (2) (2019) 1298–1318. [12] J. Faye, M. Capron, A. Takahashi, S. Paul, B. Katryniok, T. Fujitani, F. Dumeignil, Effect of oxomolybdate species dispersion on direct methanol oxidation to dimethoxymethane over MoOx/TiO2 catalysts, Energy Sci. Eng. 3 (2) (2015) 115–125. [13] K.A. Thavornprasert, M. Capron, L. Jalowiecki-Duhamel, O. Gardoll, M. Trentesaux, A.S. Mamede, G. Fang, J. Faye, N. Touati, H. Vezin, J.L. Dubois, J.L. Couturier, F. Dumeignil, Highly productive iron molybdate mixed oxides and their relevant catalytic properties for direct synthesis of 1, 1-dimethoxymethane from methanol, Appl. Catal. B Environ. 145 (2013): 126–135. [14] Meilan, Li, Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant, Catal. Commun. 68 (2015) 46–48. [15] X.L. Lu, Z.F. Qin, M. Dong, H.Q. Zhu, G.F. Wang, Y.B. Zhao, W.B. Fan, J.G.Wang, Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts, Fuel 90 (4) (2011) 1335–1339. [16] J.M. Tatibouët, H.Lauron-Pernot, Transient isotopic study of methanol oxidation on unsupported V2O5, J. Mol. Catal. A Chem. 171 (1–2) (2001) 205–216. [17] D. Oestreich, L. Lautenschütz, U. Arnold, J.Sauer, Production of oxymethylene dimethyl ether (OME)-hydrocarbon fuel blends in a one-step synthesis/extraction procedure, Fuel 214 (2018) 39–44. [18] Xiaolei, Zhang, Biomass-derived oxymethylene ethers as diesel additives: A thermodynamic analysis, Energy Procedia 61 (2014) 1921–1924. [19] X.L. Zhang, A.O. Oyedun, A. Kumar, D. Oestreich, U. Arnold, J.Sauer, An optimized process design for oxymethylene ether production from woody-biomass-derived syngas, Biomass Bioenergy 90 (2016) 7–14. [20] N. Mahbub, A. Oyedun, A. Kumar, D. Oestreich, U. Arnold, J. Sauer, A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive, J. Clean. Prod. 165 (6) (2017): 1249–1262. [21] C. Baranowski, A. Bahmanpour, O. Kröcher, Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review, Appl. Catal. B Environ. 217 (2017): 407–420. [22] G.F. Shi, J. Miao, G.Y. Wang, J.M. Su, H.X. Liu, Synthesis of polyoxymethylene dimethyl ethers catalyzed by rare earth compounds, Asian J. Chem. 27 (6) (2015) 2149–2153. [23] Y. Zhao, Z. Xu, H. Chen, Y. Fu, J. Shen, Mechanism of chain propagation for the synthesis of polyoxymethylene dimethyl ethers, J. Energy Chem. 22 (6) (2013) 833–836. [24] F. Wang, G. Zhu, Z. Li, F. Zhao, C. Xia, J. Chen, Mechanistic study for the formation of polyoxymethylene dimethyl ethers promoted by sulfonic acid-functionalized ionic liquids, J. Mol. Catal. A Chem. 408 (2015) 228–236. [25] Q. Wu, M. Wang, Y. Hao, H.S. Li, Y. Zhao, Q.Z.Jiao, Synthesis of polyoxymethylene dimethyl ethers catalyzed by Brønsted acid ionic liquids with alkanesulfonic acid groups, Ind. Eng. Chem. Res. 53 (42) (2014) 16254–16260. [26] Z.Y. Yang, Y.F. Hu, W.T. Ma, J.G. Qi, X.M. Zhang, Synthesis of polyoxymethylene dimethyl ethers catalyzed by pyrrolidinonium-based ionic liquids, Chem. Eng. Technol. 40 (10) (2017) 1784–1791. [27] W. Yajuan, Z. Li, C.G. Xia, Silica gel supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers, Ind. Eng. Chem. Res. 55 (7) (2016): 1859–1865. [28] Heyuan, Song, Efficient and reusable zeolite-immobilized acidic ionic liquids for the synthesis of polyoxymethylene dimethyl ethers, Mol. Catal. 455 (2018) 179–187. [29] Dan, Wang, Conceptual design of production of eco-friendly polyoxymethylene dimethyl ethers catalyzed by acid functionalized ionic liquids, Chem. Eng. Sci. 206 (2019) 10–21. [30] J. Burger, E. Ströfer, H. Hasse, Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane, Ind. Eng. Chem. Res. 51 (39) (2012) 12751–12761. [31] F. Liu, R. Wei, T. Wang, Identification of the rate-determining step for the synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane, Fuel Process. Technol. 180 (2018) 114–121. [32] L. Wang, W.T. Wu, T. Chen, Q. Chen, M.Y. He, Ion-exchange resin-catalyzed synthesis of polyoxymethylene dimethyl ethers: A practical and environmentally friendly way to diesel additive, Chem. Eng. Commun. 201 (5) (2014) 709–717. [33] Y. Zheng, Q. Tang, T. Wang, J. Wang, Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin, Chem. Eng. Sci. 134 (2015) 758–766. [34] Y.Y. Zheng, F. Liu, L. Guo, T.F. Wang, J.F. Wang, Molecular size reforming of undersized and oversized polyoxymethylene dimethyl ethers, RSC Adv. 6 (81) (2016) 77116–77125. [35] M. Shi, X. Yu, L. Wang, F. Dai, G. He, Q. Li, Reaction equilibrium and kinetics of synthesis of polyoxymethylene dimethyl ethers from formaldehyde and methanol, Kinet Catal 59 (3) (2018) 255–261. [36] J.Q. Zhang, M.H. Shi, D.Y. Fang, D.H. Liu, Reaction kinetics of the production of polyoxymethylene dimethyl ethers from methanol and formaldehyde with acid cation exchange resin catalyst, Reac Kinet Mech Cat 113 (2) (2014) 459–470. [37] Y. Zheng, Q. Tang, T. Wang, Y. Liao, J. Wang, Synthesis of a green fuel additive over cation resins, Chem. Eng. Technol. 36 (11) (2013) 1951–1956. [38] N. Schmitz, J. Burger, H. Hasse, Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res. 54 (50) (2015): 12553–12560. [39] Ruiyi, Wang, Synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene over graphene oxide: Probing the active species and relating the catalyst structure to performance, Appl. Catal. A Gen. 570 (2019) 15–22. [40] R.Y. Wang, Z.W. Wu, Z.F. Qin, C.M. Chen, H.Q. Zhu, J.B. Wu, G. Chen, W.B. Fan, J.G. Wang, Graphene oxide: An effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene, Catal. Sci. Technol. 6 (4) (2016) 993–997. [41] L. Lautenschütz, D. Oestreich, P. Haltenort, U. Arnold, E. Dinjus, J. Sauer, Efficient synthesis of oxymethylene dimethyl ethers (OME) from dimethoxymethane and trioxane over zeolites, Fuel Process. Technol. 165 (2017) 27–33. [42] P. Haltenort, L. Lautenschütz, U. Arnold, J. Sauer, (trans)acetalization reactions for the synthesis of oligomeric oxymethylene dialkyl ethers catalyzed by zeolite BEA25, Top Catal 62 (5) (2019) 551–559. [43] C.J. Baranowski, A.M. Bahmanpour, F. Héroguel, J.S. Luterbacher, O. Kröcher, Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite, Catal. Sci. Technol. 9 (2) (2019) 366–376. [44] C.J. Baranowski, M. Roger, A.M. Bahmanpour, O. Kröcher, Nature of synergy between Brønsted and lewis acid sites in Sn-beta zeolites for polyoxymethylene dimethyl ethers synthesis, ChemSusChem 12 (19) (2019) 4421–4431. [45] J.B. Wu, H.Q. Zhu, Z.W. Wu, Z.F. Qin, L. Yan, B.L. Du, W.B. Fan, J.G. Wang, High Si/Al ratio HZSM-5 zeolite: An efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene, Green Chem. 17 (4) (2015) 2353–2357. [46] Huaju, Li, Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania, J. Energy Chem. 24 (2) (2015) 239–244. [47] H.J. Li, Y.X. Li, T. Guo, J.D. Zhang, L. He, The green and expeditious synthesis of sulfated titania with enhanced catalytic activity in polyoxymethylene dimethyl ethers synthesis, Reac Kinet Mech Cat 124 (1) (2018) 139–151. [48] F. Liu, T. Wang, Y. Zheng, J. Wang, Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42–/TiO2 catalysts, J. Catal. 355 (2017) 17–25. [49] J.Q. Zhang, D.H. Liu, Preparation of a hydrophobic-hydrophilic adjustable catalyst surface for the controlled synthesis of polyoxymethylene dimethyl ethers: A potential replacement of diesel fuel, Int. J. Energy Res. 42 (3) (2018) 1237–1246. [50] Huaju, Li, Designed SO42–/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis: The acid sites control and reaction pathways, Appl. Catal. B Environ. 165 (2015) 466–476. [51] J.G. Qi, Y.F. Hu, S.Q. Jiang, W.T. Ma, Z.Y. Yang, Y.C. Wang, Lewis acids promote the catalytic selectivity to polyoxymethylene dimethyl ethers PODE 3, 4, Fuel 245 (2019) 521–527. [52] Z.Z. Xue, H.Y. Shang, C.H. Xiong, C.B. Lu, G.J. An, Z.L. Zhang, C.T. Cui, M.J. Xu, Synthesis of polyoxymethylene dimethyl ethers catalyzed by sulfonic acid-functionalized mesoporous SBA-15, RSC Adv. 7 (33) (2017) 20300–20308. [53] W.H. Fu, X.M. Liang, H.D. Zhang, Y.M. Wang, M.Y. He, Shape selectivity extending to ordered supermicroporous aluminosilicates, Chem. Commun. 51 (8) (2015) 1449–1452. [54] J.Q. Zhang, D.Y. Fang, D.H.Liu, Evaluation of Zr-alumina in production of polyoxymethylene dimethyl ethers from methanol and formaldehyde: Performance tests and kinetic investigations, Ind. Eng. Chem. Res. 53 (35) (2014) 13589–13597. [55] Z.Z. Xue, H.Y. Shang, Z.L. Zhang, C.H. Xiong, C.B. Lu, G.J.An, Efficient synthesis of polyoxymethylene dimethyl ethers on Al-SBA-15 catalysts with different Si/Al ratios and pore sizes, Energy Fuels 31 (1) (2017) 279–286. [56] C.J. Baranowski, A.M. Bahmanpour, F. Héroguel, J.S. Luterbacher, O. Kröcher, Insights into the nature of the active sites of tin-montmorillonite for the synthesis of polyoxymethylene dimethyl ethers (OME), ChemCatChem 11 (13) (2019) 3010–3021. [57] D. Wang, F. Zhao, G. Zhu, C. Xia, Production of eco-friendly poly(oxymethylene) dimethyl ethers catalyzed by acidic ionic liquid: A kinetic investigation, Chem. Eng. J. 334 (2018) 2616–2624. [58] T.J. Goncalves, U. Arnold, P.N. Plessow, F.Studt, Theoretical investigation of the acid catalyzed formation of oxymethylene dimethyl ethers from trioxane and dimethoxymethane, ACS Catal. 7 (5) (2017) 3615–3621. [59] J.T. Scanlon, D.E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept, J Chromatogr Sci 23 (8) (1985) 333–340. [60] H. Kondoh, K. Tanaka, Y. Nakasaka, T. Tago, T.Masuda, Catalytic cracking of heavy oil over TiO2-ZrO2 catalysts under superheated steam conditions, Fuel 167 (2016) 288–294. [61] Y.G. Li, X.L. Liu, X.H. Li, Z.J. Zhang, M.Y. Zhao, C.M. Su, Preparation of zirconia-doped titania superacid and its application in viscosity reduction of heavy oil, Micro Nano Lett. 11 (2) (2016) 86–90. [62] C. Li, L. Su, Q.Y. Li, X.D. Wang, X.H. Li, J.J. Yang, Z.J.Zhang, Enhanced heavy oil recovery in mild conditions by SO42–/ TiO2-ZrO2 solid superacid prepared by different methods, J. Nanomater. 2016 (2016) 1–6. [63] H. Fatah, Alhassan, Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3MnOSO42–/ZrO2 nanoparticle solid catalyst, Fuel 142 (2015) 38–45. [64] A. Silahua, C. Espinosa-González, F. Ortiz-Chi, J. Pacheco Sosa, H. Pérez, J. Arévalo-Pérez, S. Godavarthi, J. Torres Torres, Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: Effect of the Sol-gel synthesis additive, Catal. Commun. 129 (274) (2019) 105723. [65] S.M. Jung, P. Grange, Characterization and reactivity of pure TiO2-SO42– SCR catalyst: Influence of SO42– content, Catal. Today 59 (3–4) (2000) 305–312. [66] L. J, Ropero-Vega, Sulfated titania[TiO2/SO42–]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol, Appl. Catal. A Gen. 379 (1–2) (2010) 24–29. [67] G. Wang, G.M. Cai, Unraveling the cooperative effects of acid sites and kinetics for pyrolysis of CHF3 to C2F4 and C3F6 on SO42–/ZrO2-SiO2, Aiche J. 67 (5) (2021) e17154. [68] G. Wang, G. Cai, Cooperative catalytic effects between Brønsted and Lewis acid sites and kinetics for production of methyl methacrylate on SO42–/TiO2-SiO2, Chem. Eng. Sci. 229 (2021) 116165. [69] G. Wang, L.Y. Tao, X. Hou, H. C., C. Dong, W. Nie, J. Xu, L.Q. Zhang, Preparation, characterization of superacid SO42–/ZrO2-SiO2 and its activity on catalytic synthesis of methyl p-nitrobenzoate, J. Wuhan Univ. Technol. Mater. Sci. Ed. 29 (2014) (5)895–899. [70] J.L. Beauchamp, R.C.Dunbar, Identification of C2H5O+ structural isomers by ion cyclotron resonance spectroscopy, J. Am. Chem. Soc. 92 (6) (1970) 1477–1485. [71] M.A. Haney, J.L. Franklin, Excess energies in mass spectra of some oxygen-containing organic compounds, Trans. Faraday Soc. 65 (0) (1969) 1794–1804. [72] M. Kumakura, T.Sugiura, Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane. I. hydrogen atom and proton transfer reactions, Bull. Chem. Soc. Jpn. 50 (8) (1977) 2046–2050. [73] J.Ryczkowski, IR spectroscopy in catalysis, Catal. Today 68 (4) (2001) 263–381. [74] H.S. Fogler, Elements of chemical reaction engineering, 5th ed., Third edition. Upper Saddle River, N.J.: Prentice Hall PTR, 1999. [75] J.N. Beltramini, T.J. Wessel, R. Datta, Kinetics of deactivation of bifunctional Pt/Al2O3span class='icomoon', Aiche J. 37 (6) (1991) 845–854. |
[1] | Dongdong Hu, Yinglei Wang, Chuan Xiao, Yifei Hu, Zhiyong Zhou, Zhongqi Ren. Studies on ammonium dinitramide and 3,4-diaminofurazan cocrystal for tuning the hygroscopicity [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 157-164. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[4] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[5] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[6] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[7] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[8] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[9] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[10] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[11] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 243-250. |
[12] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[13] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[14] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[15] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 409-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||