[1] D.R. Sun, Y.H. Fu, W.J. Liu, L. Ye, D.K. Wang, L. Yang, X.Z. Fu, Z.H.Li, Studies on photocatalytic CO2 Reduction over NH2-uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks, Chem. Eur. J. 19 (42) (2013) 14279–14285. [2] J.W. Fu, K.X. Jiang, X. Qiu, J.G. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32 (2020) 222–243. [3] Z.X. Sun, H.Q. Wang, Z.B. Wu, L.Z. Wang, G-C3N4 based composite photocatalysts for photocatalytic CO2 reduction, Catal. Today 300 (2018) 160–172. [4] X.X. Chang, T. Wang, J.L. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (7) (2016) 2177–2196. [5] R. Li, W. Zhang, K. Zhou, Metal-organic-framework-based catalysts for photoreduction of CO2, Adv. Mater. 30 (35) (2018) e1705512. [6] Y. Xia, K. Xiao, B. Cheng, J.G. Yu, L. Jiang, M. Antonietti, S.W. Cao, Improving artificial photosynthesis over carbon nitride by gas-liquid-solid interface management for full light-induced CO2 reduction to C1 and C2 fuels and O2, ChemSusChem 13 (7) (2020) 1730–1734. [7] P.Y. Li, L. Liu, W.J. An, H. Wang, H.X. Guo, Y.H. Liang, W.Q.Cui, Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol, Appl. Catal. B Environ. 266 (2020) 118618. [8] K.W. Ting, T. Toyao, S.M.A.H. Siddiki, K.I. Shimizu, Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts, ACS Catal. 9 (4) (2019) 3685–3693. [9] T. Prabhu, Y. Taraka, Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH, J. CO2 Util. 31 (2019) 207–214. [10] X.H. Feng, F.P. Pan, B.Z. Tran, Y. Li, Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles, Catal. Today 339 (2020) 328–336. [11] V.D.B.C. Dasireddy, S.Š. Neja, L. Blaž, Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol, J. CO2 Util. 28 (2018) 189–199. [12] C.H. Liu, X.M. Guo, Q.S. Guo, D.S. Mao, J. Yu, G.Z.Lu, Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2, J. Mol. Catal. A Chem. 425 (2016) 86–93. [13] B.J. Kim, K.W. Jeon, H.S. Na, Y.L. Lee, S.Y. Ahn, K.J. Kim, W.J. Jang, J.O. Shim, H.S. Roh, Reducible oxide (CeO2, ZrO2, and CeO2-ZrO2) promoted Ni-MgO catalysts for carbon dioxide reforming of methane reaction, Korean J. Chem. Eng. 37 (7) (2020) 1130–1136. [14] W.L. Gao, T.T. Zhou, Q. Wang, Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions, Chem. Eng. J. 336 (2018) 710-720. [15] S.K. Sharma, T.S. Khan, R.K. Singha, B. Paul, M.K. Poddar, T. Sasaki, A. Bordoloi, C. Samanta, S. Gupta, R.Bal, Design of highly stable MgO promoted Cu/ZnO catalyst for clean methanol production through selective hydrogenation of CO2, Appl. Catal. A Gen. 623 (2021) 118239. [16] M.G. Sibi, D. Verma, H.C. Setiyadi, M.K. Khan, N. Karanwal, S.K. Kwak, K.Y. Chung, J.H. Park, D. Han, K.W. Nam, J.Kim, Synthesis of monocarboxylic acids via direct CO2 conversion over Ni-Zn intermetallic catalysts, ACS Catal. 11 (13) (2021) 8382–8398. [17] F.P. Pan, X.M. Xiang, Z.C. Du, E. Sarnello, T. Li, Y. Li, Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating, Appl. Catal. B Environ. 260 (2020) 118189. [18] P. Li, H.C. Zeng, Hierarchical nanocomposite by the integration of reduced graphene oxide and amorphous carbon with ultrafine MgO nanocrystallites for enhanced CO2 capture, Environ. Sci. Technol. 51 (21) (2017) 12998–13007. [19] V. Hiremath, R. Shavi, J.G. Seo, Controlled oxidation state of Ti in MgO-TiO2 composite for CO2 capture, Chem. Eng. J. 308 (2017) 177–183. [20] C.P. Guo, Y.W. Lu, Y.H. Tian, H. Guo, X.Q.Zhang, Porous SiO2 supported CuO as a promising catalyst on the thermal decomposition of ammonium perchlorate, Appl. Organomet. Chem. 35 (6) (2021): e6215. [21] A. Arab, Z.D.I. Sktani, Q. Zhou, Z.A. Ahmad, P. Chen, Effect of MgO addition on the mechanical and dynamic properties of zirconia toughened alumina (ZTA) ceramics, Materials (Basel) 12 (15) (2019) 2440. [22] A. Hanif, M.Z. Sun, Z.Y. Tao, L.Y. Liu, D.C.W. Tsang, Q.F. Gu, J.Shang, Silica supported MgO as an adsorbent for precombustion CO2 capture, ACS Appl. Nano Mater. 2 (10) (2019) 6565–6574. [23] F.Y. Xu, K. Meng, B. Cheng, J.G. Yu, W. Ho, Enhanced photocatalytic activity and selectivity for CO2 reduction over a TiO2 nanofibre mat using Ag and MgO as Bi-Cocatalyst, ChemCatChem 11 (1) (2019) 465–472. [24] C.D. Daub, G.N. Patey, D.B. Jack, A.K. Sallabi, Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface, J. Chem. Phys. 124 (11) (2006) 114706. [25] N.N.A.H. Meis, J.H. Bitter, K.P. Jong, Support and size effects of activated hydrotalcites for precombustion CO2 capture, Ind. Eng. Chem. Res. 49 (3) (2010) 1229–1235. [26] W.L. Gao, T.T. Zhou, Y.S. Gao, B. Louis, D. O'Hare, Q.Wang, Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: a review, J. Energy Chem. 26 (5) (2017) 830–838. [27] C. Karthikeyan, K. Ramachandran, S. Sheet, D.J. Yoo, Y.S. Lee, Y. Satish kumar, A.R. Kim, G.Gnana kumar, Pigeon-excreta-mediated synthesis of reduced graphene oxide (rGO)/CuFe2O4 nanocomposite and its catalytic activity toward sensitive and selective hydrogen peroxide detection, ACS Sustainable Chem. Eng. 5 (6) (2017) 4897–4905. [28] D. Cornu, H. Guesmi, J.M. Krafft, H.Lauron-Pernot, Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches, J. Phys. Chem. C 116 (11) (2012) 6645–6654. [29] N.H. Deepthi, Y.S. Vidya, K.S. Anantharaju, R.B. Basavaraj, D. Kavyashree, S.C. Sharma, H.Nagabhushana, Optical, electrical and luminescent studies of CuO/MgO nanocomposites synthesized via sonochemical method, J. Alloys Compd. 786 (2019) 855–866. [30] P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Synthesis, structural and luminescence studies of magnesium oxide nanopowder, Spectrochim. Acta A Mol. Biomol. Spectrosc. 118 (2014) 847–851. [31] R. Fiorenza, M. Bellardita, S.A. Balsamo, L. Spitaleri, A. Gulino, M. Condorelli, L. D'Urso, S. Scirè, L.Palmisano, A solar photothermocatalytic approach for the CO2 conversion: investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts, Chem. Eng. J. 428 (2022) 131249. [32] Sudiksha, Aggrawal, CuO immobilized paper matrices: a green catalyst for conversion of CO2 to cyclic carbonates, J. CO2 Util. 46 (2021) 101466. [33] J. Yuan, J.J. Zhang, M.P. Yang, W.J. Meng, H. Wang, J.X.Lu, CuO nanoparticles supported on TiO2 with high efficiency for CO2 electrochemical reduction to ethanol, Catalysts 8 (4) (2018) 171. [34] G. Wang, L. Ge, Z.Y. Liu, X.R. Zhu, S.J. Yang, K. Wu, P.K. Jin, X.K. Zeng, X.W. Zhang, Activation of peroxydisulfate by defect-rich CuO nanoparticles supported on layered MgO for organic pollutants degradation: an electron transfer mechanism, Chem. Eng. J. 431 (2022) 134026. [35] M. Manzanares, C. Fàbrega, J. Oriol Ossó, L.F. Vega, T. Andreu, J.R.Morante, Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction, Appl. Catal. B Environ. 150-151 (2014) 57-62. [36] X.H. Feng, F.P. Pan, H.L. Zhao, W. Deng, P. Zhang, H.C. Zhou, Y.Li, Atomic layer deposition enabled MgO surface coating on porous TiO2 for improved CO2 photoreduction, Appl. Catal. B Environ. 238 (2018) 274–283. [37] H.L. Li, X.Y. Wu, J. Wang, Y. Gao. L.Q. Li, K. Shih, Enhanced activity of AgMgOTiO2 catalyst for photocatalytic conversion of CO2 and H2O into CH4, Int. J. Hydrog. Energy 41 (20) (2016) 8479–8488. [38] S.J. Xie, Y. Wang, Q.H. Zhang, W.P. Deng, Y.Wang, MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water, ACS Catal. 4 (10) (2014) 3644–3653. [39] H. Ren, C.H. Xu, H.Y. Zhao, Y.X. Wang, J. Liu, J.Y.Liu, Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO, J. Ind. Eng. Chem. 28 (2015) 261–267. [40] F. Wang, Y. Zhou, P. Li, L.B. Kuai, Z.G. Zou, Synthesis of bionic-macro/microporous MgO-modified TiO2 for enhanced CO2 photoreduction into hydrocarbon fuels, Chin. J. Catal. 37 (6) (2016) 863–868. [41] J.A. Torres, A.E. Nogueira, G.T.S.T. da Silva, O.F. Lopes, Y.J. Wang, T. He, C.Ribeiro, Enhancing TiO2 activity for CO2 photoreduction through MgO decoration, J. CO2 Util. 35 (2020) 106–114. [42] E. Karamian, S.Sharifnia, On the general mechanism of photocatalytic reduction of CO2, J. CO2 Util. 16 (2016) 194–203. [43] T.T. Kong, Y.W. Jiang, Y.J. Xiong, Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? Chem. Soc. Rev. 49 (18) (2020) 6579–6591. |