Chinese Journal of Chemical Engineering ›› 2023, Vol. 64 ›› Issue (12): 18-25.DOI: 10.1016/j.cjche.2023.06.015
Previous Articles Next Articles
Renwen Tian, Yan Sun
Received:
2023-04-19
Revised:
2023-05-14
Online:
2024-02-05
Published:
2023-12-28
Contact:
Yan Sun,E-mail:ysun@tju.edu.cn
Supported by:
Renwen Tian, Yan Sun
通讯作者:
Yan Sun,E-mail:ysun@tju.edu.cn
基金资助:
Renwen Tian, Yan Sun. α-Synuclein: A fusion chaperone significantly boosting the enzymatic performance of PET hydrolase[J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 18-25.
Renwen Tian, Yan Sun. α-Synuclein: A fusion chaperone significantly boosting the enzymatic performance of PET hydrolase[J]. 中国化学工程学报, 2023, 64(12): 18-25.
[1] C.C. Chen, X. Han, X. Li, P.C. Jiang, D. Niu, L.X. Ma, W.D. Liu, S.Y. Li, Y.Y. Qu, H.B. Hu, J. Min, Y. Yang, L.L. Zhang, W. Zeng, J.W. Huang, L.H. Dai, R.T. Guo, General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis, Nat. Catal. 4 (5) (2021) 425–430. [2] C.C. Liu, C. Shi, S.J. Zhu, R.S. Wei, C.C. Yin, Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis, Biochem. Biophys. Res. Commun. 508 (1) (2019) 289–294. [3] Y.Q. Wang, H.X. Wang, H.M. Chen, H.T. Liu, Towards recycling purpose: Converting PET plastic waste back to terephthalic acid using pH-responsive phase transfer catalyst, Chin. J. Chem. Eng. 51 (2022) 53–60. [4] V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya-Leclair, E. Kamionka, M.L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guémard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. André, S. Duquesne, A. Marty, An engineered PET depolymerase to break down and recycle plastic bottles, Nature 580 (7802) (2020) 216–219. [5] H.Y. Yao, D.X. Yan, X.M. Lu, Q. Zhou, Y.N. Bao, J.L. Xu, Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents, Chin. J. Chem. Eng. 45 (2022) 294–300. [6] I. Taniguchi, S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura, K. Oda, Biodegradation of PET: Current status and application aspects, ACS Catal. 9 (5) (2019) 4089–4105. [7] H. Webb, J. Arnott, R. Crawford, E. Ivanova, Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate), Polymers 5 (1) (2012) 1–18. [8] M. Hajighasemi, B.P. Nocek, A. Tchigvintsev, G. Brown, R. Flick, X.H. Xu, H. Cui, T. Hai, A. Joachimiak, P.N. Golyshin, A. Savchenko, E.A. Edwards, A.F. Yakunin, Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases, Biomacromolecules 17 (6) (2016) 2027–2039. [9] C. Roth, R. Wei, T. Oeser, J. Then, C. Föllner, W. Zimmermann, N. Sträter, Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca, Appl. Microbiol. Biotechnol. 98 (18) (2014) 7815–7823. [10] W. Zimmermann, Biocatalytic recycling of polyethylene terephthalate plastic, Philos. Trans. A Math. Phys. Eng. Sci. 378 (2176) (2020) 20190273. [11] S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, A bacterium that degrades and assimilates poly(ethylene terephthalate), Science 351 (6278) (2016) 1196–1199. [12] X. Han, W.D. Liu, J.W. Huang, J.T. Ma, Y.Y. Zheng, T.P. Ko, L.M. Xu, Y.S. Cheng, C.C. Chen, R.T. Guo, Structural insight into catalytic mechanism of PET hydrolase, Nat. Commun. 8 (1) (2017) 2106. [13] Y. Ma, M.D. Yao, B.Z. Li, M.Z. Ding, B. He, S. Chen, X. Zhou, Y.J. Yuan, Enhanced poly(ethylene terephthalate) hydrolase activity by protein engineering, Engineering 4 (6) (2018) 888–893. [14] Y.L. Cui, Y.C. Chen, X.Y. Liu, S.J. Dong, Y.E. Tian, Y.X. Qiao, R. Mitra, J. Han, C.L. Li, X. Han, W.D. Liu, Q.A. Chen, W.Q. Wei, X. Wang, W.B. Du, S.Y. Tang, H.A. Xiang, H.Y. Liu, Y. Liang, K.N. Houk, B.A. Wu, Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy, ACS Catal. 11 (3) (2021) 1340–1350. [15] H.F. Son, I.J. Cho, S. Joo, H. Seo, H.Y. Sagong, S.Y. Choi, S.Y. Lee, K.J. Kim, Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation, ACS Catal. 9 (4) (2019) 3519-3526. [16] H.P. Austin, M.D. Allen, B.S. Donohoe, N.A. Rorrer, F.L. Kearns, R.L. Silveira, B.C. Pollard, G. Dominick, R. Duman, K. El Omari, V. Mykhaylyk, A. Wagner, W.E. Michener, A. Amore, M.S. Skaf, M.F. Crowley, A.W. Thorne, C.W. Johnson, H.L. Woodcock, J.E. McGeehan, G.T. Beckham, Characterization and engineering of a plastic-degrading aromatic polyesterase, Proc. Natl. Acad. Sci. USA 115 (19) (2018) E4350–E4357. [17] H. Seo, S. Kim, H.F. Son, H.Y. Sagong, S. Joo, K.J. Kim, Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli, Biochem. Biophys. Res. Commun. 508 (1) (2019) 250–255. [18] B. Liu, L.H. He, L.P. Wang, T. Li, C.C. Li, H.Y. Liu, Y.Z. Luo, R. Bao, Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from ideonella sakaiensis, Chembiochem 19 (14) (2018) 1471–1475. [19] Z.Z. Chen, R.D. Duan, Y.J. Xiao, Y. Wei, H.X. Zhang, X.Z. Sun, S. Wang, Y.Y. Cheng, X. Wang, S.W. Tong, Y.X. Yao, C. Zhu, H.T. Yang, Y.Y. Wang, Z.F. Wang, Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin, Nat. Commun. 13 (1) (2022) 7138. [20] Z.Z. Chen, Y.Y. Wang, Y.Y. Cheng, X. Wang, S.W. Tong, H.T. Yang, Z.F. Wang, Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase, Sci. Total Environ. 709 (2020) 136138. [21] Z.L. Huang, C. Zhang, X.H. Xing, Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering, Methods Enzymol. 647 (2021) 23–49. [22] R.A. George, J. Heringa, An analysis of protein domain linkers: Their classification and role in protein folding, Protein Eng. 15 (11) (2002) 871–879. [23] X.Y. Lu, S. Liu, D.X. Zhang, X.M. Zhou, M. Wang, Y. Liu, J. Wu, G.C. Du, J. Chen, Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides, Appl. Microbiol. Biotechnol. 97 (21) (2013) 9419–9427. [24] N. Li, H. Xia, Z.F. Ni, Z.W. Guo, Y. Song, W.Q. Huang, Y.B. Jiang, W.Y. Lou, Improving catalytic efficiency of endoxylanase for degrading corncob xylan to produce xylooligosaccharides by fusing a β-xylosidase, Ind. Crops Prod. 176 (2022) 114349. [25] W.X. Zhao, L.M. Liu, G.C. Du, S. Liu, A multifunctional tag with the ability to benefit the expression, purification, thermostability and activity of recombinant proteins, J. Biotechnol. 283 (2018) 1–10. [26] O. Ullman, C.K. Fisher, C.M. Stultz, Explaining the structural plasticity of α-synuclein, J. Am. Chem. Soc. 133 (48) (2011) 19536–19546. [27] D. Ghosh, P.K. Singh, S. Sahay, N.N. Jha, R.S. Jacob, S. Sen, A. Kumar, R. Riek, S.K. Maji, Structure based aggregation studies reveal the presence of helix-rich intermediate during α-Synuclein aggregation, Sci. Rep. 5 (2015) 9228. [28] G. Bhak, A. Méndez-Ardoy, A. Escobedo, X. Salvatella, J. Montenegro, An adhesive peptide from the C-terminal domain of α-synuclein for single-layer adsorption of nanoparticles onto substrates, Bioconjug. Chem. 31 (12) (2020) 2759–2766. [29] L.K. Su, K. Chen, S. Bai, L.L. Yu, Y. Sun, Cutinase fused with C-terminal residues of α-synuclein improves polyethylene terephthalate degradation by enhancing the substrate binding, Biochem. Eng. J. 188 (2022) 108709. [30] K. Chen, Y. Hu, X.Y. Dong, Y. Sun, Molecular insights into the enhanced performance of EKylated PETase toward PET degradation, ACS Catal. 11 (12) (2021) 7358–7370. [31] L.G. Jia, Y. Wang, J.C. Sang, W. Cui, W.P. Zhao, W. Wei, B.B. Chen, F.P. Lu, F.F. Liu, Dihydromyricetin inhibits α-synuclein aggregation, disrupts preformed fibrils, and protects neuronal cells in culture against amyloid-induced cytotoxicity, J. Agric. Food Chem. 67 (14) (2019) 3946–3955. [32] S. Joo, I.J. Cho, H. Seo, H.F. Son, H.Y. Sagong, T.J. Shin, S.Y. Choi, S.Y. Lee, K.J. Kim, Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation, Nat. Commun. 9 (1) (2018) 382. [33] H.Y. Sagong, H. Seo, T. Kim, H.F. Son, S. Joo, S.H. Lee, S. Kim, J.S. Woo, S.Y. Hwang, K.J. Kim, Decomposition of the PET film by MHETase using exo-PETase function, ACS Catal. 10 (8) (2020) 4805–4812. [34] Z. Liu, S. Lemmonds, J. Huang, M. Tyagi, L. Hong, N. Jain, Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119, Proc. Natl. Acad. Sci. USA 115 (43) (2018) E10049–E10058. [35] C. Roodveldt, D.S. Tawfik, Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state, Protein Eng. Des. Sel. 18 (1) (2005) 51–58. [36] C.Y. Ke, Y.T. Wu, W.L. Tseng, Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme-substrate system, Biosens. Bioelectron. 69 (2015) 46–53. [37] D.K. Patel, D.V. Menon, D.H. Patel, G. Dave, Linkers: A synergistic way for the synthesis of chimeric proteins, Protein Expr. Purif. 191 (2022) 106012. [38] T.D. Kim, S.R. Paik, C.H. Yang, J. Kim, Structural changes in alpha-synuclein affect its chaperone-like activity in vitro, Protein Sci. 9 (12) (2000) 2489–2496. [39] C.C. Chen, X. Han, T.P. Ko, W.D. Liu, R.T. Guo, Structural studies reveal the molecular mechanism of PETase, Febs J. 285 (20) (2018) 3717–3723. [40] T. Yuan, A.M. Weljie, H.J. Vogel, Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: Orientation of peptide and protein binding, Biochemistry 37 (9) (1998) 3187–3195. [41] R. Zhang, Y. Liu, X.R. Huang, M.C. Xu, R.T. Liu, W.S. Zong, Interaction of a digestive protease, Candida rugosa lipase, with three surfactants investigated by spectroscopy, molecular docking and enzyme activity assay, Sci. Total Environ. 622-623 (2018) 306–315. [42] K. Chen, M.Q. Quan, X.Y. Dong, Q.H. Shi, Y. Sun, Low modification of PETase enhances its activity toward degrading PET: Effect of conjugate monomer property, Biochem. Eng. J. 175 (2021) 108151. [43] Z.L. Huang, F.C. Ye, C. Zhang, S. Chen, Y. Chen, J.J. Wu, M. Togo, X.H. Xing, Rational design of a tripartite fusion protein of heparinase I enables one-step affinity purification and real-time activity detection, J. Biotechnol. 163 (1) (2013) 30–37. [44] B.C. Knott, E. Erickson, M.D. Allen, J.E. Gado, R. Graham, F.L. Kearns, I. Pardo, E. Topuzlu, J.J. Anderson, H.P. Austin, G. Dominick, C.W. Johnson, N.A. Rorrer, C.J. Szostkiewicz, V. Copié, C.M. Payne, H.L. Woodcock, B.S. Donohoe, G.T. Beckham, J.E. McGeehan, Characterization and engineering of a two-enzyme system for plastics depolymerization, Proc. Natl. Acad. Sci. USA 117 (41) (2020) 25476–25485. [45] A. Kokorin, P.D. Parshin, P.J. Bakkes, A.A. Pometun, V.I. Tishkov, V.B. Urlacher, Genetic fusion of P450 BM3 and formate dehydrogenase towards self-sufficient biocatalysts with enhanced activity, Sci. Rep. 11 (1) (2021) 21706. [46] H.Y. Lu, D.J. Diaz, N.J. Czarnecki, C.Z. Zhu, W. Kim, R. Shroff, D.J. Acosta, B.R. Alexander, H.O. Cole, Y. Zhang, N.A. Lynd, A.D. Ellington, H.S. Alper, Machine learning-aided engineering of hydrolases for PET depolymerization, Nature 604 (7907) (2022) 662–667. [47] E.L. Bell, R. Smithson, S. Kilbride, J. Foster, F.J. Hardy, S. Ramachandran, A.A. Tedstone, S.J. Haigh, A.A. Garforth, P.J.R. Day, C. Levy, M.P. Shaver, A.P. Green, Directed evolution of an efficient and thermostable PET depolymerase, Nat. Catal. 5 (8) (2022) 673–681. [48] L.X. Shi, P. Liu, Z.J. Tan, W. Zhao, J.F. Gao, Q. Gu, H.W. Ma, H.F. Liu, L.L. Zhu, Complete depolymerization of PET wastes by an evolved PET hydrolase from directed evolution, Angew. Chem. Int. Ed Engl. 62 (14) (2023) e202218390. |
[1] | Jianfeng Cheng, Meixuan Li, Yutong Wang, Jiexiang Li, Jiawei Wen, Chunxia Wang, Guoyong Huang. Effects of Al and Co doping on the structural stability and high temperature cycling performance of LiNi0.5Mn1.5O4 spinel cathode materials [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 201-209. |
[2] | Ali Nikkhah, Hasan Nikkhah, Hadis langari, Alireza Nouri, Abdul Wahab Mohammad, Ang Wei Lun, Ng law Yong, Rosiah Rohani, Ebrahim Mahmoudi. MXene: From synthesis to environment remediation [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 260-280. |
[3] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[5] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204. |
[6] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[7] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[8] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[9] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[10] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[11] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[12] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[13] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[14] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[15] | Abid Ali, Bilal Ul Amin, Wenwu Yu, Taijiang Gui, Weiwei Cong, Kai Zhang, Zheming Tong, Jiankun Hu, Xiaoli Zhan, Qinghua Zhang. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 80-88. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 158
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||