Chinese Journal of Chemical Engineering ›› 2024, Vol. 68 ›› Issue (4): 133-143.DOI: 10.1016/j.cjche.2023.11.025
Previous Articles Next Articles
Yuan Xu, Ziwei Liu, Ying Dai, Jinbo Ouyang, Zhuyao Li, Yuling Zhu, Jianhua Ding, Feiqiang He
Received:
2023-08-31
Revised:
2023-11-05
Online:
2024-06-28
Published:
2024-04-28
Contact:
Feiqiang He,E-mail address:he_feiqiang@ecit.cn
Supported by:
Yuan Xu, Ziwei Liu, Ying Dai, Jinbo Ouyang, Zhuyao Li, Yuling Zhu, Jianhua Ding, Feiqiang He
通讯作者:
Feiqiang He,E-mail address:he_feiqiang@ecit.cn
基金资助:
Yuan Xu, Ziwei Liu, Ying Dai, Jinbo Ouyang, Zhuyao Li, Yuling Zhu, Jianhua Ding, Feiqiang He. Nitric oxide removal from flue gas coupled with the FeIIEDTA regeneration by ultraviolet irradiation[J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 133-143.
Yuan Xu, Ziwei Liu, Ying Dai, Jinbo Ouyang, Zhuyao Li, Yuling Zhu, Jianhua Ding, Feiqiang He. Nitric oxide removal from flue gas coupled with the FeIIEDTA regeneration by ultraviolet irradiation[J]. 中国化学工程学报, 2024, 68(4): 133-143.
[1] X. Liu, C.A. Wang, T. Zhu, Q. Lv, D.F. Che, Simultaneous removal of SO2 and NOx with OH from the catalytic decomposition of H2O2 over Fe-Mo mixed oxides, J. Hazard. Mater. 404(2021) 123936. [2] Z.G. Xiao, D.X. Li, Q.L. Zhu, Z.H. Sun, Simultaneous removal of NO and SO2 through a new wet recycling oxidation-reduction process utilizing micro-nano bubble gas-liquid dispersion system based on Na2SO3, Fuel 263(2020) 116682. [3] Y. Zhang, L. Zhao, Z.A. Chen, X.Y. Li, Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks, Chin. J. Chem. Eng. 46(2022) 113-125. [4] S.Y. Yang, D. Xu, W.J. Yan, Y.Q. Xiong, Effective NO and SO2 removal from fuel gas with H2O2 catalyzed by Fe3O4/Fe0/Fe3C encapsulated in multi-walled carbon nanotubes, J. Environ. Chem. Eng. 9(4) (2021) 105413. [5] M. Si, B.X. Shen, G. Adwek, L.F. Xiong, L.J. Liu, P. Yuan, H.P. Gao, C. Liang, Q.H. Guo, Review on the NO removal from flue gas by oxidation methods, J. Environ. Sci. 101(2021) 49-71. [6] F.Q. He, X.H. Deng, M. Chen, Nitric oxide removal by combined urea and FeIIEDTA reaction systems, Chemosphere 168(2017) 623-629. [7] S.G. Chang, D. Littlejohn, S. Lynn, Effects of metal chelates on wet flue gas scrubbing chemistry, Environ. Sci. Technol. 17(11) (1983) 649-653. [8] F. He, X. Zhu, X. Chen, J. Ding, Performance, optimization, and mechanism of nitric oxide removal by thiourea dioxide/FeIIEDTA reaction systems, Chinese J. Chem. Eng. 28(2020) 2918-2927. [9] F.Q. He, X.Y. Zhu, X.C. Chen, J.H. Ding, Performance, mechanism, and kinetics of NO removal by combined ascorbic acid and FeIIEDTA reaction systems, Fuel 284(2021) 119070. [10] T. Zhou, Y. Huang, Fe(III) EDTA and Fe(II) EDTA-NO reduction by supported (nano) ZVI in Fe(II) EDTA complexation denitrification technology: Performance, kinetics, and pathway, J. Environ. Chem. Eng. 10(6) (2022) 108547. [11] E. Sada, H. Kumazawa, Y. Takada, Chemical reactions accompanying absorption of nitric oxide into aqueous mixed solutions of iron(II)-EDTA and sodium sulfite, Ind. Eng. Chem. Fund. 23(1) (1984) 60-64. [12] F. He, X. Zhu, X. Chen, Y. Qian, J. Ding, Simultaneous removal of NO and SO2 from flue gas by FeIIEDTA/sodium dithionite solutions, J. Chem.Technol. Biot. 95(2020) 1392-1399. [13] Y.G. Adewuyi, N.Y. Sakyi, Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature, Ind. Eng. Chem. Res. 52(33) (2013) 11702-11711. [14] X.J. Wang, Y. Zhang, X.Y. Dong, M.X. Chen, Z.A. Shi, J.T. Zhou, Fe(II) EDTA-NO reduction by sulfide in the anaerobic aqueous phase: Stoichiometry and kinetics, Energy Fuels 27(10) (2013) 6024-6030. [15] F.Q. He, X.Y. Zhu, X.C. Chen, J.H. Ding, Evaluation of FeIIEDTA-NO reduction by thiourea dioxide in NO removal with FeIIEDTA, Asia Pac. J. Chem. Eng. 15(1) (2020) e2397. [16] F.Q. He, X.H. Deng, M. Chen, Evaluation of Fe(II) EDTA-NO reduction by zinc powder in wet flue gas denitrification technology with Fe(II) EDTA, Fuel 199(2017) 523-531. [17] Y.K. Duo, X.P. Wang, J.J. He, S.H. Zhang, H. Pan, J.M. Chen, J. Chen, Simultaneous removal of SO2 and NO by FeII(EDTA) solution: Promotion of Mn powder and mechanism of reduction, Environ. Sci. Pollut. Res. 26(28) (2019) 28808-28816. [18] F.Q. He, X.H. Deng, M. Chen, Mechanism and kinetics of Fe(II) EDTANO reduction by iron powder under anaerobic condition, Fuel 186(2016) 605-612. [19] X.Y. Zhu, F.Q. He, M. Xia, H.G. Liu, J.H. Ding, Evaluation of Fe(iii) EDTA reduction with ascorbic acid in a wet denitrification system, RSC Adv. 9(42) (2019) 24386-24393. [20] L.R. Zhong, F.Q. He, B.B. Dong, J.H. Ding, Novel NO removal using combined sodium erythorbate and FeIIEDTA system, Korean J. Chem. Eng. 39(10) (2022) 2691-2701. [21] M.H. Mendelsohn, J.B.L. Harkness, Enhanced flue-gas denitrification using ferrous.cntdot.EDTA and a polyphenolic compound in an aqueous scrubber system, Energy Fuels 5(2) (1991) 244-248. [22] X.J. Yang, L. Yang, L. Dong, X.L. Long, W.K. Yuan, Kinetics of the[Fe(III)-EDTA]- reduction by sulfite under the catalysis of activated carbon, Energy Fuels 25(10) (2011) 4248-4255. [23] K.S. Xiang, H. Liu, B.T. Yang, C. Zhang, S. Yang, Z.L. Liu, C. Liu, X.F. Xie, L.Y. Chai, X.B. Min, Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: A reaction-controlled phase transfer catalysis, Environ. Sci. Pollut. Res. 23(8) (2016) 8113-8119. [24] C. Xu, G.G. Chang, H.X. Liu, W.J. Xu, G.X. Zhang, Highly efficient heterogeneous catalytic reduction of Fe(II) EDTA-NO in industrial denitrification solution over Pd/AC catalyst, Ind. Eng. Chem. Res. 58(51) (2019) 22875-22883. [25] S.H. Liu, X.H. Guo, Z.K. Wang, Z.R. Hu, H.Q. Wang, G.X. Zhang, Core-shell Ag-Pd nanoparticles catalysts for efficient NO reduction by formic acid, Colloids Surf. A 626(2021) 127115. [26] Z.M. Zhou, G.H. Jing, X.J. Zheng, Reduction of Fe(III)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions, Bioresour. Technol. 132(2013) 210-216. [27] X.Y. Dong, Y. Zhang, J.T. Zhou, N. Li, M.X. Chen, Reduction of Fe(III)EDTA in a NOx scrubber liquor by a denitrifying bacterium and the effects of inorganic sulfur compounds on this process, Bioresour. Technol. 120(2012) 127-132. [28] S.H. Zhang, W. Li, C.Z. Wu, H. Chen, Y. Shi, Reduction of Fe(II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution, Appl. Microbiol. Biotechnol. 76(5) (2007) 1181-1187. [29] X.Y. Dong, Y. Zhang, J.T. Zhou, M.X. Chen, X.J. Wang, Z. Shi, Fe(II)EDTA-NO reduction coupled with Fe(II)EDTA oxidation by a nitrate- and Fe(III)-reducing bacterium, Bioresour. Technol. 138(2013) 339-344. [30] M.X. Chen, J.T. Zhou, Y. Zhang, X.J. Wang, Z. Shi, X.W. Wang, Fe(III)EDTA and Fe(II)EDTA-NO reduction by a sulfate reducing bacterium in NO and SO2 scrubbing liquor, World J. Microbiol. Biotechnol. 31(3) (2015) 527-534. [31] W. Li, C.Z. Wu, S.H. Zhang, K. Shao, Y. Shi, Evaluation of microbial reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system, Environ. Sci. Technol. 41(2) (2007) 639-644. [32] Dai Q. Research on the complex absorption coupling electrochemical regeneration integrated denitrification process, Beijing University of Chemical Technology 2019. [33] N. Liu, Y.Y. Li, D.J. Ouyang, R. Guo, R. Chen, W. Li, J.X. Li, J.H. Zhao, Study on NOx removal from simulated flue gas by an electrobiofilm reactor: EDTA-ferrous regeneration and biological kinetics mechanism, Environ. Sci. Pollut. Res. 28(3) (2021) 2860-2870. [34] S. Cheon, J.Y. Lee, S.H. Kim, H.C. Yoon, J.I. Han, Effective electroregeneration of the oxidized iron(II) thiochelate absorbent in the wet NOX absorption process, ACS EST Eng. 2(7) (2022) 1287-1295. [35] W. Li, H.Y. Yue, C.Y. Zhang, J.Y. Hu, Q.L. Wang, Y.M. Li, S.H. Zhang, J.M. Chen, J.K. Zhao, Engineering multiscale polypyrrole/carbon nanotubes interface to boost electron utilization in a bioelectrochemical system coupled with chemical absorption for NO removal, Chemosphere 303(2022) 134943. [36] C. Xu, L. Guan, P. Gong, J. Xu, G. Zhang, Experimental research on photoreduction of Fe(Ⅲ)EDTA in complex denitrification solution, J. Wuhan Univ. Technol. 41(2019) 28-33[in Chinese]. [37] Z.W. Liu, F.Q. He, L.M. Zhou, Y. Dai, Z.Y. Li, Y. Xu, J.H. Ding, Performance, kinetics and mechanism of Fe(II)EDTA regeneration with surface-fluorinated anatase TiO2 with exposed (001) facets, J. Environ. Chem. Eng. 11(3) (2023) 110118. [38] V. Zang, R. Van Eldik, Influence of the polyamino carboxylate chelating ligand (L) on the kinetics and mechanism of the formation of FeII(L)NO in the system FeII(L)/NO/HONO/NO2- in aqueous solution, Inorg. Chem. 29(22) (1990) 4462-4468. [39] State Environmental Protection Administration of China (SEPA). Monitoring and Analysis Method of Water and Wastewater, 3rd ed. Beijing, China: China Environmental Science Press; 1989. [40] Chinese Health Ministry, National Food Safety Standard, GB 5009.33; 2010. [41] F. He, Y. Qian, J. Xu, Performance, mechanism, and kinetics of Fe(III)EDTA reduction by thiourea dioxide, Energy Fuel 33(2019) 3331-3338. [42] M. Jaworska, G. Stopa, Z. Stasicka, Photochemical NO-removal and NOx-release in the presence of Fe-EDTA complexes. DFT calculations of electronic structure and spectroscopy of the[Fe(edta)(NO)] 2- complex, Nitric Oxide 23(3) (2010) 227-233. [43] X.Y. Dong, Y. Zhang, J.T. Zhou, H.Y. Li, X.J. Wang, M.X. Chen, Evaluation of simultaneous reduction of Fe(II)EDTA-NO and Fe(III)EDTA by a bacterial pure culture, J. Chem. Technol. & Biotechnol. 89(2014) 111-116. [44] N.H. Lin, D. Littlejohn, S.G. Chang, Thermodynamics and kinetics of the coordination of nitric oxide to iron(II) NTA in aqueous solutions, Ind. Eng. Chem. Proc. Des. Dev. 21(4) (1982) 725-728. [45] P. Gans, Reaction of nitric oxide with cobalt(II) ammine complexes and other reducing agents, J. Chem. Soc., A (1967) 943. [46] Y.X. Liu, L. Liu, Y. Wang, A critical review on removal of gaseous pollutants using sulfate radical-based advanced oxidation technologies, Environ. Sci. Technol. 55(14) (2021) 9691-9710. [47] Y.X. Liu, J. Zhang, Removal of NO from flue gas using UV/S2 process in a novel photochemical impinging stream reactor, AlChE. J. 63(7) (2017) 2968-2980. [48] J.H. Ye, J. Shang, Q. Li, W.W. Xu, J. Liu, X. Feng, T. Zhu, The use of vacuum ultraviolet irradiation to oxidize SO2 and NOx for simultaneous desulfurization and denitrification, J. Hazard. Mater. 271(2014) 89-97. [49] Z. Liu, F. He, L. Zhou, Z. Li, L. Zhong, J. Ding, Effective nitric oxide removal from flue gas using UV/H2O2 solution catalyzed by Fe3O4@FeEDTA, J. Chem.Technol. Biot. 98(2023) 1731-1741. [50] Y.X. Liu, Q.A. Wang, J.F. Pan, Novel process of simultaneous removal of nitric oxide and sulfur dioxide using a vacuum ultraviolet (VUV)-activated O2/H2O/H2O2 system in A wet VUV-spraying reactor, Environ. Sci. Technol. 50(23) (2016) 12966-12975. [51] C.V. Raghunath, M.K. Mondal, Experimental scale multi component absorption of SO2 and NO by NH3/NaClO scrubbing, Chem. Eng. J. 314(2017) 537-547. [52] H.S. Zhu, Y.P. Mao, X.J. Yang, Y. Chen, X.L. Long, W.K. Yuan, Simultaneous absorption of NO and SO2 into FeII-EDTA solution coupled with the FeII-EDTA regeneration catalyzed by activated carbon, Sep. Purif. Technol. 74(1) (2010) 1-6. [53] H.Z. Zhu, Z.G. Nie, Y.F. Hu, J.Y. Wang, H.C. Bai, Y.H. Li, Q.J. Guo, C.P. Wang, Experimental study on denitration performance of iron complex-based absorption solutions and their regeneration by Zn, Energy Fuels 33(9) (2019) 8998-9003. [54] L.F. Ma, Z.Q. Tong, J.F. Zhang, Removal of NOx from flue gas with iron filings reduction following complex absorption in ferrous chelates aqueous solutions, J. Air Waste Manag. Assoc. 54(12) (2004) 1543-1549. [55] B. Yan, J.H. Yang, M. Guo, G.D. Chen, Z. Li, S.C. Ma, Study on NO enhanced absorption using FeIIEDTA in (NH4)2SO3 solution, J. Ind. Eng. Chem. 20(4) (2014) 2528-2534. |
[1] | Jiayin Zhang, Lu Zheng, Siqi Fang, Hongwei Zhang, Zhenping Cai, Kuan Huang, Lilong Jiang. Efficient and reversible separation of NH3 by deep eutectic solvents with multiple active sites and low viscosities [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 97-105. |
[2] | Kun Li, Han Tang, Shuangshuang Li, Zixuan Huang, Bei Liu, Chun Deng, Changyu Sun, Guangjin Chen. Highly efficient CO2 capture using 2-methylimidazole aqueous solution on laboratory and pilot-scale [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 148-156. |
[3] | Shangyuan Cheng, Guisheng Qi, Yuliang Li, Yixuan Yang. Visual experimental study of nanofluids application to promote CO2 absorption in a bubble column [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 228-237. |
[4] | Zhuang Liu, Bo Gao, Haoyuan Han, Yuling Li, Haiyang Fu, Donghui Wei. A green cross-linking method for the preparation of renewable three-dimensional graphene sponges for efficient adsorption of Congo red dye [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 84-93. |
[5] | Jinqiang Liang, Danzhu Liu, Shuliang Xu, Mao Ye. Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 94-103. |
[6] | Xuepu Cao, Shengkun Jia, Xing Qian, Yiqing Luo, Xigang Yuan. Cascade equilibrium stage relaxation method by introducing equilibrium efficiency parameter [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 145-156. |
[7] | Binxuan Zhou, Jingcai Chang, Jun Li, Jinglan Hong, Tao Wang, Liqiang Zhang, Ping Zhou, Chunyuan Ma. Study of the reaction mechanism for preparing powdered activated coke with SO2 adsorption capability via one-step rapid activation method under flue gas atmosphere [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 158-168. |
[8] | Yuanyuan Yin, Xujun Wang, Lei Xu, Binbin He, Yunxiang Nie, Yi Mei. Simultaneous removal of sulfur dioxide and nitrogen oxide from flue gas by phosphorus sludge: The performance and absorption mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 212-221. |
[9] | Wenjian Yue, Xiaojiang Li, Junhao Jing, Li Tong, Na Wang, Hongsheng Lu, Zhiyu Huang. A CO2-controllable phase change absorbent solvent used to waste recycling of dining lampblack [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 110-117. |
[10] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[11] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[12] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[13] | Feng Pan, Sugang Ma, Yu Ge, Chuanlin Fan, Qingshan Zhu. Fluidization thermal decomposition of sodium fluosilicate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 329-337. |
[14] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[15] | Yuandong Cui, Bin He, Yu Lei, Yu Liang, Wanting Zhao, Jian Sun, Xiaomin Liu. Lignin derived absorbent for efficient and sustainable CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 89-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||