Chinese Journal of Chemical Engineering ›› 2024, Vol. 68 ›› Issue (4): 120-132.DOI: 10.1016/j.cjche.2023.08.013
Previous Articles Next Articles
Tanaz Ghanadi1, Gholamreza Moradi1, Alimorad Rashidi2
Received:
2022-11-21
Revised:
2023-05-18
Online:
2024-06-28
Published:
2024-04-28
Contact:
Gholamreza Moradi,E-mail address:moradi_m@yahoo.com
Tanaz Ghanadi1, Gholamreza Moradi1, Alimorad Rashidi2
通讯作者:
Gholamreza Moradi,E-mail address:moradi_m@yahoo.com
Tanaz Ghanadi, Gholamreza Moradi, Alimorad Rashidi. Synthesis of boron nitride nanorod and its performance as a metal-free catalyst for oxidative desulfurization of diesel fuel[J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 120-132.
Tanaz Ghanadi, Gholamreza Moradi, Alimorad Rashidi. Synthesis of boron nitride nanorod and its performance as a metal-free catalyst for oxidative desulfurization of diesel fuel[J]. 中国化学工程学报, 2024, 68(4): 120-132.
[1] M.D.G. de Luna, M.L. Samaniego, D.C. Ong, M.W. Wan, M.C. Lu, Kinetics of sulfur removal in high shear mixing-assisted oxidative-adsorptive desulfurization of diesel, J. Clean. Prod. 178(2018) 468-475. [2] M. Taghizadeh, E. Mehrvarz, A. Taghipour, Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: a critical review, Rev. Chem. Eng. 36(7) (2020) 831-858. [3] M. Ja’fari, S.L. Ebrahimi, M.R. Khosravi-Nikou, Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: a critical review, Ultrason. Sonochem. 40(Pt A) (2018) 955-968. [4] M. Hossain, H. Park, H. Choi, A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil, Catalysts 9(3) (2019) 229. [5] L.W. Hao, T. Su, D.M. Hao, C.L. Deng, W.Z. Ren, H.Y. Lu, Oxidative desulfurization of diesel fuel with caprolactam-based acidic deep eutectic solvents: tailoring the reactivity of DESs by adjusting the composition, Chin. J. Catal. 39(9) (2018) 1552-1559. [6] T. Ganguly, A. Das, M. Jana, A. Majumdar, Cobalt(II)-mediated desulfurization of thiophenes, sulfides, and thiols, Inorg. Chem. 57(18) (2018) 11306-11309. [7] X.S. Wang, L. Li, J. Liang, Y.B. Huang, R. Cao, Boosting oxidative desulfurization of model and real gasoline over phosphotungstic acid encapsulated in metal-organic frameworks: the window size matters, ChemCatChem 9(6) (2017) 971-979. [8] C. Sentorun-Shalaby, S.K. Saha, X.L. Ma, C.S. Song, Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel, Appl. Catal. B Environ. 101(3-4) (2011) 718-726. [9] F.T. Li, B. Wu, R.H. Liu, X.J. Wang, L.J. Chen, D.S. Zhao, An inexpensive N-methyl-2-pyrrolidone-based ionic liquid as efficient extractant and catalyst for desulfurization of dibenzothiophene, Chem. Eng. J. 274(2015) 192-199. [10] S.T. Du, X.X. Chen, Q.M. Sun, N. Wang, M.J. Jia, V. Valtchev, J.H. Yu, A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance, Chem. Commun. 52(17) (2016) 3580-3583. [11] T.A.G. Duarte, S.M.G. Pires, I.C.M.S. Santos, M.M.Q. Simoes, M.G.P.M.S. Neves, A.M.V. Cavaleiro, J.A.S. Cavaleiro, A Mn(iii) polyoxotungstate in the oxidation of organosulfur compounds by H2O2 at room temperature: an environmentally safe catalytic approach, Catal. Sci. Technol. 6(9) (2016) 3271-3278. [12] S.H. Xun, C.Z. Hou, H.P. Li, M.Q. He, R.L. Ma, M. Zhang, W.S. Zhu, H.M. Li, Synthesis of WO3/mesoporous ZrO2 catalyst as a high-efficiency catalyst for catalytic oxidation of dibenzothiophene in diesel, J. Mater. Sci. 53(23) (2018) 15927-15938. [13] K. Chen, N. Liu, M.H. Zhang, D.H. Wang, Oxidative desulfurization of dibenzothiophene over monoclinic VO2 phase-transition catalysts, Appl. Catal. B Environ. 212(2017) 32-40. [14] C.N. Dai, J. Zhang, C.P. Huang, Z.G. Lei, Ionic liquids in selective oxidation: catalysts and solvents, Chem. Rev. 117(10) (2017) 6929-6983. [15] R. Limvorapitux, H.Y. Chen, M.L. Mendonca, M.T. Liu, R.Q. Snurr, S.T. Nguyen, Elucidating the mechanism of the UiO-66-catalyzed sulfide oxidation: activity and selectivity enhancements through changes in the node coordination environment and solvent, Catal. Sci. Technol. 9(2) (2019) 327-335. [16] X.M. Yu, P.F. Han, Y. Li, Oxidative desulfurization of dibenzothiophene catalyzed by α-MnO2 nanosheets on palygorskite using hydrogen peroxide as oxidant, RSC Adv. 8(32) (2018) 17938-17943. [17] T. Guo, W. Jiang, Y.J. Ruan, L. Dong, H. Liu, H.P. Li, W.S. Zhu, H.M. Li, Superparamagnetic Mo-containing core-shell microspheres for catalytic oxidative desulfurization of fuel, Colloids Surf. A Physicochem. Eng. Aspects 537(2018) 243-249. [18] S. Houda, C. Lancelot, P. Blanchard, L. Poinel, C. Lamonier, Oxidative desulfurization of heavy oils with high sulfur content: a review, Catalysts 8(9) (2018) 344. [19] L. Kang, H.Y. Liu, H.J. He, C.P. Yang, Oxidative desulfurization of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration, Fuel 234(2018) 1229-1237. [20] L. Chen, Z.P. Hu, J.T. Ren, Z. Wang, Z.Y. Yuan, Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates, Microporous Mesoporous Mater. 315(2021) 110921. [21] X.Y. Liu, X.P. Li, R.X. Zhao, H. Zhang, A facile sol-gel method based on urea-SnCl2 deep eutectic solvents for the synthesis of SnO2/SiO2 with high oxidation desulfurization activity, New J. Chem. 45(35) (2021) 15901-15911. [22] P.W. Wu, Q.D. Jia, J. He, L.J. Lu, L.L. Chen, J. Zhu, C. Peng, M.Q. He, J. Xiong, W.S. Zhu, H.M. Li, Mechanical exfoliation of boron carbide: a metal-free catalyst for aerobic oxidative desulfurization in fuel, J. Hazard. Mater. 391(2020) 122183. [23] P.W. Wu, L.J. Lu, J. He, L.L. Chen, Y.H. Chao, M.Q. He, F.X. Zhu, X.Z. Chu, H.M. Li, W.S. Zhu, Hexagonal boron nitride: a metal-free catalyst for deep oxidative desulfurization of fuel oils, Green Energy Environ. 5(2) (2020) 166-172. [24] I. Ahmed, P. Puthiaraj, Y.M. Chung, W.S. Ahn, Metal-free aerobic oxidative desulfurization over a diethyltriamine-functionalized aromatic porous polymer, Fuel Process. Technol. 215(2021) 106741. [25] Q.Q. Gu, G.D. Wen, Y.X. Ding, K.H. Wu, C.M. Chen, D.S. Su, Reduced graphene oxide: a metal-free catalyst for aerobic oxidative desulfurization, Green Chem. 19(4) (2017) 1175-1181. [26] D.V. Shtansky, K.L. Firestein, D.V. Golberg, Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids, Nanoscale 10(37) (2018) 17477-17493. [27] A.I. Epishin, T. Link, B. Fedelich, I.L. Svetlov, E.R. Golubovskiy, Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on Mechanical properties, MATEC Web Conf. 14(2014) 08003. [28] V. Sharma, H.L. Kagdada, P.K. Jha, P. Spiewak, K.J. Kurzydlowski, Thermal transport properties of boron nitride based materials: a review, Renew. Sustain. Energy Rev. 120(2020) 109622. [29] P.W. Wu, W.S. Zhu, A.M. Wei, B.L. Dai, Y.H. Chao, C.F. Li, H.M. Li, S. Dai, Controllable fabrication of tungsten oxide nanoparticles confined in graphene-analogous boron nitride as an efficient desulfurization catalyst, Chemistry 21(43) (2015) 15421-15427. [30] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Graphene-based materials for hydrogen generation from light-driven water splitting, Adv. Mater. 25(28) (2013) 3820-3839. [31] W.W. Lei, D. Liu, Y. Chen, Highly crumpled boron nitride nanosheets as adsorbents: scalable solvent-less production, Adv. Mater. Interfaces 2(3) (2015) 1400529. [32] J.Y. Zhu, H. Wang, J.W. Liu, L.Z. Ouyang, M. Zhu, Exfoliation of MoS2 and h-BN nanosheets by hydrolysis of LiBH4, Nanotechnology 28(11) (2017) 115604. [33] D. Liu, M.W. Zhang, W.J. Xie, L. Sun, Y. Chen, W.W. Lei, Efficient photocatalytic reduction of aqueous Cr(vi) over porous BNNSs/TiO2 nanocomposites under visible light irradiation, Catal. Sci. Technol. 6(23) (2016) 8309-8313. [34] A. Seif, A. Rashidi, S. Scheiner, K. Azizi, T. Kar, Theoretical insight into a feasible strategy of capturing, storing and releasing toxic HCN at the surface of doped BN-sheets by charge modulation, Appl. Surf. Sci. 496(2019) 143714. [35] W.D. Oh, M.G.H. Lee, W.D. Chanaka Udayanga, A. Veksha, Y.P. Bao, A. Giannis, J.W. Lim, G. Lisak, Insights into the single and binary adsorption of copper(II) and nickel(II) on hexagonal boron nitride: performance and mechanistic studies, J. Environ. Chem. Eng. 7(1) (2019) 102872. [36] X.Y. Zhang, R. You, Z.Y. Wei, X. Jiang, J.Z. Yang, Y. Pan, P.W. Wu, Q.D. Jia, Z.H. Bao, L. Bai, M.Z. Jin, B. Sumpter, V. Fung, W.X. Huang, Z.L. Wu, Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts, Angew. Chem. Int. Ed Engl. 59(21) (2020) 8042-8046. [37] A. Rajendran, H.X. Fan, J. Feng, W.Y. Li, Desulfurization on boron nitride and boron nitride-based materials, Chem. Asian J. 15(14) (2020) 2038-2059. [38] P.W. Wu, W.S. Zhu, Y.H. Chao, J.S. Zhang, P.F. Zhang, H.Y. Zhu, C.F. Li, Z.G. Chen, H.M. Li, S. Dai, A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization, Chem. Commun. 52(1) (2016) 144-147. [39] Y.C. Wu, P.W. Wu, Y.H. Chao, J. He, H.P. Li, L.J. Lu, W. Jiang, B.B. Zhang, H.M. Li, W.S. Zhu, Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance, Nanotechnology 29(2) (2018) 025604. [40] N. Lv, L. Sun, L. Chen, Y. Li, J. Zhang, P. Wu, H. Li, W. Zhu, H. Li, The mechanism of thiophene oxidation on metal-free two-dimensional hexagonal boron nitride, Phys. Chem. Chem. Phys. 21(39), (2019) 21867-21874. [41] R. Han, M.H. Khan, A. Angeloski, G. Casillas, C.W. Yoon, X.D. Sun, Z.G. Huang, Hexagonal boron nitride nanosheets grown via chemical vapor deposition for silver protection, ACS Appl. Nano Mater. 2(5) (2019) 2830-2835. [42] W.W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization, Nat. Commun. 6(2015) 8849. [43] C.P. Yu, Q.C. Zhang, J. Zhang, R.J. Geng, W. Tian, X.D. Fan, Y.G. Yao, One-step in situ ball milling synthesis of polymer-functionalized few-layered boron nitride and its application in high thermally conductive cellulose composites, ACS Appl. Nano Mater. 1(9) (2018) 4875-4883. [44] S. Marchesini, A. Regoutz, D. Payne, C. Petit, Tunable porous boron nitride: investigating its formation and its application for gas adsorption, Microporous Mesoporous Mater. 243(2017) 154-163. [45] Y.M. Xue, P.C. Dai, X.F. Jiang, X.B. Wang, C. Zhang, D.M. Tang, Q.H. Weng, X. Wang, A. Pakdel, C.C. Tang, Y. Bando, D. Golberg, Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification, J. Mater. Chem. A 4(4) (2016) 1469-1478. [46] L. Qiu, Y. Cheng, C.P. Yang, G.M. Zeng, Z.Y. Long, S.N. Wei, K. Zhao, L. Luo, Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone, RSC Adv. 6(21) (2016) 17036-17045. [47] M.F. Majid, H.F. Mohd Zaid, C. Fai Kait, K. Jumbri, J.W. Lim, A.N. Masri, S.M. Mat Ghani, H. Yamagishi, Y. Yamamoto, B. Yuliarto, Liquid polymer eutectic mixture for integrated extractive-oxidative desulfurization of fuel oil: an optimization study via response surface methodology, Processes 8(7) (2020) 848. [48] F. Hojatisaeidi, M. Mureddu, F. Dessi, G. Durand, B. Saha, Metal-free modified boron nitride for enhanced CO2 capture, Energies 13(3) (2020) 549. [49] W.W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nat. Commun. 4(2013) 1777. [50] C. Yang, J.F. Wang, Y. Chen, D. Liu, S.M. Huang, W.W. Lei, One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption, Nanoscale 10(23) (2018) 10979-10985. [51] M. Oz, C. Bozkurt, B.K. Yilmaz, G. Yildirim, Effect of borates on the synthesis of nanoscale hexagonal boron nitride by a solid-state method, Micr osc. Res. Tech. 84(11) (2021) 2677-2684. [52] X.X. Han, L.X. Zhou, Optimization of process variables in the synthesis of butyl butyrate using acid ionic liquid as catalyst, Chem. Eng. J. 172(1) (2011) 459-466. [53] F. Bibak, G. Moradi, Oxidative desulfurization of model oil and oil cuts with MoO3/SBA-15: experimental design and optimization by Box-Behnken method, React. Kinet. Mech. Catal. 131(2020) 935-951. [54] H.P. Li, Y.J. Li, L.H. Sun, S.H. Xun, W. Jiang, M. Zhang, W.S. Zhu, H.M. Li, H2O2 decomposition mechanism and its oxidative desulfurization activity on hexagonal boron nitride monolayer: a density functional theory study, J. Mol. Graph. Model. 84(2018) 166-173. [55] F. Wang, K. Xiao, L. Shi, L.C. Bing, D.Z. Han, G.J. Wang, Catalytic oxidative desulfurization of model fuel utilizing functionalized HMS catalysts: characterization, catalytic activity and mechanistic studies, React. Chem. Eng. 6(2) (2021) 289-296. [56] M.A. Shadmehri, M.R. Housaindokht, A. Nakhaei Pour, Oxidative desulfurization of dibenzothiophene via layered graphitic carbon nitride-coordinated transition metal as a catalyst, New J. Chem. 45(36) (2021) 16773-16783. [57] A. Haghighat Mamaghani, S. Fatemi, M. Asgari, Investigation of influential parameters in deep oxidative desulfurization of dibenzothiophene with hydrogen peroxide and formic acid, Int. J. Chem. Eng. 2013(2013) 951045. [58] S. Subhan, A. Ur Rahman, M. Yaseen, H. Ur Rashid, M. Ishaq, M. Sahibzada, Z.F. Tong, Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant, Fuel 237(2019) 793-805. [59] M.R. Jalali, M.A. Sobati, Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box-Behnken design (BBD), Appl. Therm. Eng. 111(2017) 1158-1170. [60] Y. Cao, H.X. Wang, R.M. Ding, L.C. Wang, Z. Liu, B.L. Lv, Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst, Appl. Catal. A Gen. 589(2020) 117308. [61] S. Hasannia, M. Kazemeini, A. Seif, A. Rashidi, Oxidative desulfurization of a model liquid fuel over an rGO-supported transition metal modified WO3 catalyst: experimental and theoretical studies, Sep. Purif. Technol. 269(2021) 118729. [62] X.C. Chen, H.S. Guo, A.A. Abdeltawab, Y.W. Guan, S.S. Al-Deyab, G.R. Yu, L. Yu, Broensted-lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel, Energy Fuels 29(5) (2015) 2998-3003. [63] I. Shafiq, M. Hussain, S. Shafique, R. Rashid, P. Akhter, A. Ahmed, J.K. Jeon, Y.K. Park, Oxidative desulfurization of refinery diesel pool fractions using LaVO4 photocatalyst, J. Ind. Eng. Chem. 98(2021) 283-288. [64] S. Vedachalam, P. Boahene, A.K. Dalai, Oxidative desulfurization of heavy gas oil over a Ti-TUD-1-supported keggin-type molybdenum heteropolyacid, Energy Fuels 34(12) (2020) 15299-15312. [65] A. Quintanilla, G. Vega, J. Carbajo, J.A. Casas, Y. Lei, K. Fujisawa, H. Liu, R. Cruz-Silva, M. Terrones, P. Miranzo, M.I. Osendi, M. Belmonte, J. Fernandez Sanz, Understanding the active sites of boron nitride for CWPO: an experimental and computational approach, Chem. Eng. J. 406(2021) 126846. [66] Y.S. Al-Hamdani, D. Alfe, O.A. von Lilienfeld, A. Michaelides, Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: water and other small molecules, J. Chem. Phys. 144(15) (2016) 154706. [67] A. Mortezaee, M.A. Sobati, S. Movahedirad, S. Shahhosseini, An experimental investigation on the oxidative desulfurization of a mineral lubricant base oil, J. Environ. Health Sci. Eng. 19(2) (2021) 1951-1968. [68] E.B. Krivtsov, A.K. Golovko, The kinetics of oxidative desulfurization of diesel fraction with a hydrogen peroxide-formic acid mixture, Pet. Chem. 54(1) (2014) 51-57. [69] M.M. Awad, Y.M. El-Toukhee, E.A. Hassan, K.K. Taha, Dearomatization of diesel by solvent extraction: influence of the solvent ratio and temperature on diesel raffinate properties, Pet. Chem. 58(5) (2018) 444-450. |
[1] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[2] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[3] | Chongfu Wu, Changsheng Chen, Zhaoyang Qi, Jie Chen, Qinglian Wang, Changshen Ye, Ting Qiu. Facile synthesis of efficient pentaethylenehexamine-phosphotungstic acid heterogeneous catalysts for oxidative desulfurization [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 140-147. |
[4] | Jiali Du, Feng Wu, Xiaoxun Ma. Progress in research of process intensification of spouted beds: A comprehensive review [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 238-260. |
[5] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[6] | Cuiting Yang, Bowen Wu, Zewei Liu, Guang Miao, Qibin Xia, Zhong Li, Michael J. Janik, Guoqing Li, Jing Xiao. Catalytic adsorptive desulfurization of mercaptan, sulfide and disulfide using bifunctional Ti-based adsorbent for ultra-clean oil [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 25-34. |
[7] | Zhentao Chen, Yaxin Liu, Jian Chen, Yang Zhao, Tao Jiang, Fangyu Zhao, Jiahuan Yu, Haoxuan Yang, Fan Yang, Chunming Xu. Synthesis of alumina-nitrogen-doped carbon support for CoMo catalysts in hydrodesulfurization process [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 392-402. |
[8] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[9] | Jiangyuan Qu, Nana Qi, Kai Zhang, Lifeng Li, Pengcheng Wang. Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 13-26. |
[10] | Sobhan Farahani, Mohammad Amin Sobati. A novel method for the management of sulfone-rich waste produced in the oxidative desulfurization (ODS) process [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2447-2456. |
[11] | Baowei Wang, Shumei Yao, Yeping Peng. Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2457-2466. |
[12] | Jing Gao, Qiang Li, Fuli Liu. Calcium sulfate whisker prepared by flue gas desulfurization gypsum: A physical-chemical coupling production process [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2221-2226. |
[13] | Mohammad Dana, Mohammad Amin Sobati, Shahrokh Shahhosseini, Aminreza Ansari. Optimization of a continuous ultrasound assisted oxidative desulfurization (UAOD) process of diesel using response surface methodology (RSM) considering operating cost [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1384-1396. |
[14] | Xingqiang Zhao, Changfeng Yang, Mengke Lu, Yao Shi, Gang Qian, Xinggui Zhou, Xuezhi Duan. Coupling non-isothermal trickle-bed reactor with catalyst pellet models to understand the reaction and diffusion in gas oil hydrodesulfurization [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1095-1106. |
[15] | Dong Sun, Lin Yang, Ning Liu, Wenju Jiang, Xia Jiang, Jianjun Li, Zhengyou Yang, Zhengping Song. Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 864-870. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||