Chinese Journal of Chemical Engineering ›› 2024, Vol. 71 ›› Issue (7): 91-101.DOI: 10.1016/j.cjche.2024.04.009
Previous Articles Next Articles
Yuting Zhang1, Yuwei Tang1, Ruiping Yan1, Shuang Liang1, Zhongmou Liu1, Yadong Yang2
Received:
2023-11-23
Revised:
2024-03-20
Online:
2024-08-30
Published:
2024-07-28
Contact:
Zhongmou Liu,E-mail:liuzm6988@163.com
Supported by:
Yuting Zhang1, Yuwei Tang1, Ruiping Yan1, Shuang Liang1, Zhongmou Liu1, Yadong Yang2
通讯作者:
Zhongmou Liu,E-mail:liuzm6988@163.com
基金资助:
Yuting Zhang, Yuwei Tang, Ruiping Yan, Shuang Liang, Zhongmou Liu, Yadong Yang. Green-synthesized, biochar-supported nZVI from mango kernel residue for aqueous hexavalent chromium removal: Performance, mechanism and regeneration[J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 91-101.
Yuting Zhang, Yuwei Tang, Ruiping Yan, Shuang Liang, Zhongmou Liu, Yadong Yang. Green-synthesized, biochar-supported nZVI from mango kernel residue for aqueous hexavalent chromium removal: Performance, mechanism and regeneration[J]. 中国化学工程学报, 2024, 71(7): 91-101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.04.009
[1] H.T. Wang, Y. Wang, Z.L. Liu, S.J. Luo, V. Romanovski, X.Q. Huang, B. Czech, H.W. Sun, T.L. Li, Rational construction of micron-sized zero-valent iron/graphene composite for enhanced Cr(VI) removal from aqueous solution, J. Environ. Chem. Eng. 10 (6) (2022) 109004. [2] B.M. Wenzel, N.R. Marcilio, M. Godinho, L. Masotti, C.B. Martins, Iron and chromium sulfates from ferrochromium alloy for tanning, Chem. Eng. J. 165 (1) (2010) 17-25. [3] H. Dong, Q. He, G. Zeng, L. Tang, C. Zhang, Y. Xie, Y. Zeng, F. Zhao, Y. Wu, Chromate removal by surface-modified nanoscale zero-valent iron: effect of different surface coatings and water chemistry, J. Colloid Interface Sci. 471 (2016) 7-13. [4] W. Zhang, L. Qian, D. Ouyang, Y. Chen, L. Han, M. Chen, Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: enhanced adsorption and crystallization, Chemosphere 221 (2019) 683-692. [5] R. Shan, Y.Y. Shi, J. Gu, J.W. Bi, H.R. Yuan, B. Luo, Y. Chen, Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: role of pyrolysis and modification on its absorption process, J. Environ. Chem. Eng. 8 (4) (2020) 103885. [6] X. Zhang, H.X. Xu, M. Xi, Z.X. Jiang, Removal/adsorption mechanisms of Cr(VI) and natural organic matter by nanoscale zero-valent iron-loaded biochar in their coexisting system, J. Environ. Chem. Eng. 11 (3) (2023) 109860. [7] Z.M. Liu, Z.W. Shi, P. Zhang, Y.H. Wang, J. Li, Simultaneous removal of Cr(VI) and 2, 4-dichlorophenol from water using the zero-valent iron-aminotriacetic acid system, J. Environ. Chem. Eng. 11 (3) (2023) 110066. [8] K.D. Grieger, A. Fjordboege, N.B. Hartmann, E. Eriksson, P.L. Bjerg, A. Baun, Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J. Contam. Hydrol. 118 (3-4) (2010) 165-183. [9] T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol. 41 (1) (2007) 284-290. [10] H. Su, Z. Fang, P.E. Tsang, J. Fang, D. Zhao, Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in situ remediation of hexavalent chromium in soil, Environ Pollut 214 (2016) 94-100. [11] Y.C. Li, Z.H. Jin, T.L. Li, Z.M. Xiu, One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (VI) reduction, Sci. Total Environ. 421-422 (2012) 260-266. [LinkOut]. [12] L. Qian, X. Shang, B. Zhang, W. Zhang, A. Su, Y. Chen, D. Ouyang, L. Han, J. Yan, M. Chen, Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron, Chemosphere 215 (2019) 739-745. [13] J. Qu, Y. Yuan, X. Zhang, L. Wang, Y. Tao, Z. Jiang, H. Yu, M. Dong, Y. Zhang, Stabilization of lead and cadmium in soil by sulfur-iron functionalized biochar: performance, mechanisms and microbial community evolution, J. Hazard Mater. 425 (2022) 127876. [14] Z. Jiang, H. Zheng, B. Xing, Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies, Sci. Total Environ. 760 (2021) 143342. [15] K. Liu, F. Li, J. Cui, S. Yang, L. Fang, Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms, J. Hazard Mater. 395 (2020) 122623. [16] F.X. Meng, Z.J. Li, C. Lei, K. Yang, D.H. Lin, Removal of trichloroethene by iron-based biochar from anaerobic water: key roles of Fe/C ratio and iron carbides, Chem. Eng. J. 413 (2021) 127391. [17] M. Fazlzadeh, K. Rahmani, A. Zarei, H. Abdoallahzadeh, F. Nasiri, R. Khosravi, A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions, Adv. Powder Technol. 28 (1) (2017) 122-130. [18] Z.H. Diao, W.X. Zhang, J.Y. Liang, S.T. Huang, F.X. Dong, L. Yan, W. Qian, W. Chu, Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: synergistic effect and mechanism, Chem. Eng. J. 409 (2021) 127684. [19] N. Zhang, F. Reguyal, S. Praneeth, A.K. Sarmah, A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: regeneration and sorption mechanism, Environ Pollut 330 (2023) 121806. [20] W.D. Wang, H.T. Ma, W. Lin, P. Sun, L.K. Zhang, J.H. Han, Trametes suaveolens-derived biochar loaded on nanoscale zero-valent iron particles for the adsorption and reduction of Cr(VI), Int. J. Environ. Sci. Technol. 19 (5) (2022) 4251-4264. [21] S. Batool, A.A. Shah, A.F. Abu Bakar, M.J. Maah, N.K. Abu Bakar, Removal of organochlorine pesticides using zerovalent iron supported on biochar nanocomposite from Nephelium lappaceum (Rambutan) fruit peel waste, Chemosphere 289 (2022) 133011. [22] Y.Z. Zhang, L.M. Zhang, C. Han, Y.F. Ren, Y. Ji, Y.J. Ge, Z.J. Li, J.Y. He, Preparation, characteristics and mechanisms of Cd(II) adsorption from aqueous solution by mango kernel-derived biochar, Biomass Convers. Biorefin. 13 (1) (2023) 393-407. [23] L.M. Zhang, Y.F. Ren, Y.H. Xue, Z.W. Cui, Q.H. Wei, C. Han, J.Y. He, Preparation of biochar by mango peel and its adsorption characteristics of Cd(Ⅱ) in solution, RSC Adv. 10 (59) (2020) 35878-35888. [24] Y.L. Lin, N.Y. Zheng, Biowaste-to-biochar through microwave-assisted wet co-torrefaction of blending mango seed and passion shell with optoelectronic sludge, Energy 225 (2021) 120213. [25] J.K. Mutua, S. Imathiu, W. Owino, Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts, Food Sci. Nutr. 5 (2) (2017) 349-357. [26] Y. Zhang, X. Jiao, N. Liu, J. Lv, Y. Yang, Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar, Chemosphere 245 (2020) 125542. [27] S. Bhattacharjee, F. Habib, N. Darwish, A. Shanableh, Iron sulfide nanoparticles prepared using date seed extract: green synthesis, characterization and potential application for removal of ciprofloxacin and chromium, Powder Technol. 380 (2021) 219-228. [28] H.Y. Liu, M. Hu, H. Zhang, J.F. Wei, Biosynthesis of stalk Biochar-nZVI and its catalytic reactivity in degradation of dyes by persulfate, Surf. Interfaces 31 (2022) 102098. [29] Q.Y. Qiu, M.Y. Zhou, W.Z. Cai, Q. Zhou, Y.P. Zhang, W. Wang, M.L. Liu, J. Liu, A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse, Biomass Bioenergy 121 (2019) 56-63. [30] H.Y. Liu, M. Hu, H. Zhang, J.F. Wei, Biosynthesis of stalk Biochar-nZVI and its catalytic reactivity in degradation of dyes by persulfate, Surf. Interfaces 31 (2022) 102098. [31] T. Li, F. Zhu, W.J. Liang, G.Y. Hu, X.Q. Deng, Y.B. Xue, J. Guan, Simultaneous removal of p-nitrophenol and Cr(VI) using biochar supported green synthetic nano zero valent iron-copper: mechanistic insights and toxicity evaluation, Process. Saf. Environ. Prot. 167 (2022) 629-640. [32] T. Wang, J.J. Lin, Z.L. Chen, M. Megharaj, R. Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean. Prod. 83 (2014) 413-419. [33] K. Mohan Kumar, B.K. Mandal, K. Siva Kumar, P. Sreedhara Reddy, B. Sreedhar, Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract, Spectrochim. Acta Mol. Biomol. Spectrosc. 102 (2013) 128-133. [34] C. Du, N. Xu, Z. Yao, X. Bai, Y. Gao, L. Peng, B. Gu, J. Zhao, Mechanistic insights into sulfate and phosphate-mediated hexavalent chromium removal by tea polyphenols wrapped nano-zero-valent iron, Sci. Total Environ. 850 (2022) 157996. [35] H. Wijnja, C.P. Schulthess, Carbonate adsorption mechanism on goethite studied with ATR-FTIR, DRIFT, and proton coadsorption measurements, Soil Sci. Soc. Am. J. 65 (2) (2001) 324-330. [36] H.Y. Nan, F. Yang, L. Zhao, O. Masek, X.D. Cao, Z.Y. Xiao, Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential, ACS Sustainable Chem. Eng. 7 (1) (2019) 1591-1599. [37] L. Passauer, K. Salzwedel, M. Struch, N. Herold, J. Appelt, Quantitative analysis of the etherification degree of phenolic hydroxyl groups in oxyethylated lignins: correlation of selective aminolysis with FTIR spectroscopy, ACS Sustainable Chem. Eng. 4 (12) (2016) 6629-6637. [38] B. Zghari, P. Doumenq, A. Romane, A. Boukir, GC-MS, FTIR and 1H, 13C NMR structural analysis and identification of phenolic compounds in olive mill wastewater extracted from oued oussefrou effluent (beni mellal-morocco), J. Mater. Environ. Sci. 8 (12) (2017) 4496-4509. [39] D. Jalandhara, G. Singh, K. Yadav, Effect of sintering temperature on the optical properties of BiFeO3 nanoparticles, AIP Conference Proceedings. Bikaner, India. (2016). [40] E.M. Altundag, C. Ozbilenler, S. Usturk, N.R. Kerkuklu, M. Afshani, E. Yilmaz, Metal - based curcumin and quercetin complexes: cell viability, ROS production and antioxidant activity, J. Mol. Struct. 1245 (2021) 131107. [41] C. Yang, C. Ge, X. Li, L. Li, B. Wang, A. Lin, W. Yang, Does soluble starch improve the removal of Cr(VI) by nZVI loaded on biochar? Ecotoxicol. Environ. Saf. 208 (2021) 111552. [42] T. Zhang, S. Wei, G.I.N. Waterhouse, L.E. Fu, L. Liu, W.J. Shi, J.C. Sun, S.Y. Ai, Chromium (VI) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon, Powder Technol. 360 (2020) 55-64. [43] H. Cheng, C. Huang, P. Wang, D. Ling, X. Zheng, H. Xu, C. Feng, H. Liu, M. Cheng, Z. Liu, Molybdenum disulfide co-catalysis boosting nanoscale zero-valent iron based Fenton-like process: performance and mechanism, Environ. Res. 227 (2023) 115752. [44] Y. Li, M.J. Deng, X.J. Wang, Y. Wang, J. Li, S.Q. Xia, J.F. Zhao, In-situ remediation of oxytetracycline and Cr(VI) co-contaminated soil and groundwater by using blast furnace slag-supported nanosized Fe0/FeSx, Chem. Eng. J. 412 (2021) 128706. [45] Y.T. Zhang, N. Liu, Y.D. Yang, J.L. Li, S.C. Wang, J. Lv, R. Tang, Novel carbothermal synthesis of Fe, N Co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal, Colloids Surf. A Physicochem. Eng. Aspects 600 (2020) 124926. [46] T.V. Thu, A. Sandhu, Chemical synthesis of Fe3O4-graphene oxide nanohybrids as building blocks for magnetic and conductive membranes, Mater. Sci. Eng. B 189 (2014) 13-20. [47] H.R. Tian, C. Huang, P. Wang, J. Wei, X.Y. Li, R.M. Zhang, D.X. Ling, C.L. Feng, H. Liu, M.X. Wang, Z.M. Liu, Enhanced elimination of Cr(VI) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: performance and mechanism, Bioresour. Technol. 369 (2023) 128452. [48] G.Y. Yang, Y. Li, G.X. Mei, L.L. Cui, M.H. Fan, X.Q. He, Phosphidation treatment of surfactant-tuned iron polyphthalocyanine grown in situ on nickel foam: an efficient bifunctional catalyst for overall water splitting, Int. J. Hydrog. Energy 55 (2024) 153-163. [49] U. Jamil, M. Zeeshan, S.R. Khan, S. Saeed, Synthesis and two-step KOH based activation of porous biochar of wheat straw and waste tire for adsorptive exclusion of chromium (VI) from aqueous solution; thermodynamic and regeneration study, J. Water Process Eng. 53 (2023) 103892. [50] Y. Yi, X. Wang, J. Ma, P. Ning, An efficient Egeria najas-derived biochar supported nZVI composite for Cr(VI) removal: characterization and mechanism investigation based on visual MINTEQ model, Environ. Res. 189 (2020) 109912. [51] R. Sinha, R. Kumar, K. Abhishek, J.Y. Shang, S. Bhattacharya, S. Sengupta, N. Kumar, R.K. Singh, J. Mallick, M. Kar, P. Sharma, Single-step synthesis of activated magnetic biochar derived from rice husk for hexavalent chromium adsorption: equilibrium mechanism, kinetics, and thermodynamics analysis, Groundw. Sustain. Dev. 18 (2022) 100796. [52] P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J. Hazard Mater. 180 (1-3) (2010) 1-19. [53] H. Ma, J. Yang, X. Gao, Z. Liu, X. Liu, Z. Xu, Removal of chromium (VI) from water by porous carbon derived from corn straw: influencing factors, regeneration and mechanism, J. Hazard Mater. 369 (2019) 550-560. [54] Y. Li, S. Zhu, Q. Liu, Z. Chen, J. Gu, C. Zhu, T. Lu, D. Zhang, J. Ma, N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal, Water Res. 47 (12) (2013) 4188-4197. [55] S. Zhu, X. Huang, D. Wang, L. Wang, F. Ma, Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: mechanisms and application potential, Chemosphere 207 (2018) 50-59. [56] L. Qian, S. Liu, W. Zhang, Y. Chen, D. Ouyang, L. Han, J. Yan, M. Chen, Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron, J. Colloid Interface Sci. 533 (2019) 428-436. [57] A. Shakya, T. Agarwal, Removal of Cr(VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment, J. Mol. Liq. 293 (2019) 111497. [58] H.S. Kim, J.Y. Ahn, C. Kim, S. Lee, I. Hwang, Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid, Chemosphere 113 (2014) 93-100. [59] Y.X. Deng, X.Y. Wang, I. Lynch, Z.L. Guo, P. Zhang, L.S. Wu, X. Wu, T.S. Li, Homogeneous dispersion of amorphous nanoscale zero-valent iron supported on chlorella-derived biochar: in-situ synthesis and application mechanism for Cr(VI) removal over a wide pH range, Sep. Purif. Technol. 330 (2024) 125207. [60] T.T. Wang, Y.C. Sun, L. Bai, C.H. Han, X.Y. Sun, Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: application performance and reaction mechanism, Sep. Purif. Technol. 306 (2023) 122631. [61] W. Ji, X.B. Wang, T.Q. Ding, S. Chakir, Y.F. Xu, X.H. Huang, H.T. Wang, Electrospinning preparation of nylon-6@UiO-66-NH2 fiber membrane for selective adsorption enhanced photocatalysis reduction of Cr(VI) in water, Chem. Eng. J. 451 (2023) 138973. [62] B. Qiu, Y.R. Wang, D.Z. Sun, Q. Wang, X. Zhang, B.L. Weeks, R. O'Connor, X.H. Huang, S.Y. Wei, Z.H. Guo, Cr(vi) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures, J. Mater. Chem. A 3 (18) (2015) 9817-9825. [63] Y. Qiu, Q. Zhang, B. Gao, M. Li, Z. Fan, W. Sang, H. Hao, X. Wei, Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: synergy of adsorption, reduction and transformation, Environ Pollut 265 (pt b) (2020) 115018. [64] K.X. Li, Z.A. Huang, S.Y. Zhu, S.L. Luo, L.S. Yan, Y.H. Dai, Y.H. Guo, Y.X. Yang, Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems, Appl. Catal. B Environ. 243 (2019) 386-396. [65] S. Zhou, Y. Hu, M. Yang, Y. Liu, Q. Li, Y. Wang, G. Gu, M. Gan, Insights into the mechanism of persulfate activation with carbonated waste metal adsorbed resin for the degradation of 2, 4-dichlorophenol, Environ. Res. 226 (2023) 115639. |
[1] | Hai Cao, Haibin Yang, Yanxiong Fang, Yuandi Zeng, Xiaolan Cai, Jingjing Ma. Study on trifluoromethanesulfonic acid-promoted synthesis of daidzein: Process optimization and reaction mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 132-139. |
[2] | Jiaxin Zhang, Lu Wang, Zhiqiang Ma, Chuanjun Di, Guanghui Chen, Jipeng Dong, Jianlong Li, Fei Gao. One-step preparation of efficient cuprous chloride catalyst for direct synthesis of trimethoxysilane [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 161-171. |
[3] | Runnong Yang, Wuyuan Liu, Zhaoying Wang, Ming Sun, Guangying Fu, Zihan Gao, Wenjian Jiao, Rui Li, Lin Yu. Promoted catalytic property of Cu/SSZ-13 by introducing a minority of Mn for NO removal from diesel engine exhaust [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 172-182. |
[4] | Mohammed Benjelloun, Youssef Miyah, Salma Ssouni, Soulaiman Iaich, Mohamed El-habacha, Salek Lagdali, Khadija Saka, El Mustafa Iboustaten, Abdelaziz Ait Addi, Sanae Lairini, Rabia Bouslamti. Capparis spinosa L waste activated carbon as an efficient adsorbent for crystal violet toxic dye removal: Modeling, optimization by experimental design, and ecological analysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 283-302. |
[5] | Huashuai Wu, Gang Wang, Yong Yang, Yongwang Li. Modeling analysis of cobalt-based Fischer-Tropsch catalyst particles [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 82-92. |
[6] | Jing Wen, Ruirui Yuan, Tao Jiang, Tangxia Yu, Yufan Zhang. Solvothermal synthesis and adsorption performance of layered boehmite using aluminum chloride and high-alumina fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 280-290. |
[7] | Kaixin Han, Yibo Zeng, Yinghua Lu, Ping Zeng, Liang Shen. Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 56-62. |
[8] | Qingping Qu, Daoyan Liu, Hao Lyu, Jinsheng Sun. Process synthesis for the separation of coal-to-ethanol products [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 263-278. |
[9] | Yuan Xu, Ziwei Liu, Ying Dai, Jinbo Ouyang, Zhuyao Li, Yuling Zhu, Jianhua Ding, Feiqiang He. Nitric oxide removal from flue gas coupled with the FeIIEDTA regeneration by ultraviolet irradiation [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 133-143. |
[10] | Li Wang, Ji-Xiang Guo, Rui-Ying Xiong, Chen-Hao Gao, Xiao-Jun Zhang, Dan Luo. In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 166-173. |
[11] | Tiesen Li, Ting Chen, Yinghui Ye, Peng Dong, Tinghai Wang, Qingyan Cui, Chan Wang, Yuanyuan Yue. OSDA-free synthesis of FeZSM-22 zeolite from natural minerals for n-octane hydroisomerization [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 51-59. |
[12] | Zhuang Liu, Bo Gao, Haoyuan Han, Yuling Li, Haiyang Fu, Donghui Wei. A green cross-linking method for the preparation of renewable three-dimensional graphene sponges for efficient adsorption of Congo red dye [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 84-93. |
[13] | Jinqiang Liang, Danzhu Liu, Shuliang Xu, Mao Ye. Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 94-103. |
[14] | Zhihao Guo, Jiuxuan Zhang, Lanlan Chen, Chaoqun Fan, Hong Jiang, Rizhi Chen. Hollow ZIF-67-derived Co@N-doped carbon nanotubes boosting the hydrogenation of phenolic compounds to alcohols [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 157-166. |
[15] | Yinghui Liu, Shaoduo Liu, Xiaosheng Wang, Hongjing Wang, Ranjia Li, Changchun Yu, Chunming Xu, Yuxiang Liu, Zhengqiu Xie, Yongqiang Wang, Pan Tang. Synthesis of mordenite by solvent-free method and its application in the dimethyl ether carbonylation reaction [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 216-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||