[1] Y. He, W.J. Niu, C.Q. Xia, B.H. Cao, Daidzein reduces the proliferation and adiposeness of 3T3-L1 preadipocytes via regulating adipogenic gene expression, J. Funct. Foods 22 (2016) 446-453. [2] S.H. Nile, A. Nile, J.W. Oh, G.Y. Kai, Soybean processing waste: Potential antioxidant, cytotoxic and enzyme inhibitory activities, Food Biosci. 38 (2020) 100778. [3] A.P. Laddha, Y.A. Kulkarni, Pharmacokinetics, pharmacodynamics, toxicity, and formulations of daidzein: An important isoflavone, Phytother. Res. 37 (6) (2023) 2578-2604. [4] J.C. Shu, L.Z. Hu, Y.C. Wu, L. Chen, K. Huang, Z.H. Wang, M.L. Liang, Daidzein suppresses TGF-β1-induced cardiac fibroblast activation via the TGF-β1/SMAD2/3 signaling pathway, Eur. J. Pharmacol. 919 (2022) 174805. [5] X.H. Zhao, Z.D. Chen, S. Zhou, X.Z. Song, K.H. Ouyang, K. Pan, L.J. Xu, C.J. Liu, M.R. Qu, Effects of daidzein on performance, serum metabolites, nutrient digestibility, and fecal bacterial community in bull calves, Anim. Feed. Sci. Technol. 225 (2017) 87-96. [6] H.M. Xie, E. Yu, H.M. Wen, B.Y. Jiang, G.H. Fu, H.T. Sun, J. He, Maternal daidzein supplementation during lactation promotes growth performance, immunity, and intestinal health in neonatal rabbits, Agriculture 13 (9) (2023) 1654. [7] F.C. Stintzing, M. Hoffmann, R. Carle, Thermal degradation kinetics of isoflavone aglycones from soy and red clover, Mol. Nutr. Food Res. 50 (4-5) (2006) 373-377. [8] J. Liggins, A. Mulligan, S. Runswick, S.A. Bingham, Daidzein and genistein content of cereals, Eur. J. Clin. Nutr. 56 (10) (2002) 961-966. [9] J. Liggins, L.J.C. Bluck, S. Runswick, C. Atkinson, W.A. Coward, S.A. Bingham, Daidzein and genistein content of fruits and nuts, J. Nutr. Biochem. 11 (6) (2000) 326-331. [10] S.H. Nile, B. Venkidasamy, R. Samynathan, A. Nile, K. Shao, T. Chen, M. Sun, M.U. Khan, N. Dutta, M. Thiruvengadam, M.A. Shariati, M. Rebezov, G. Kai, Soybean processing wastes: Novel insights on their production, extraction of isoflavones, and their therapeutic properties, J. Agric. Food Chem. 70 (23) (2022) 6849-6863. [11] W.D. Ollis, K.L. Ormand, I.O. Sutherland, The oxidative rearrangement of chalcones by thallic acetate: A chemical analogy for isoflavone biosynthesis, Chem. Commun. (London) (20) (1968) 1237. [12] L. Farkas, A. Gottsegen, M. Noagradi, S. Antus, Synthesis of sophorol, violanone, lonchocarpan, claussequinone, philenopteran, leiocalycin, and some other natural isoflavonoids by the oxidative rearrangement of chalcones with thallium(III) nitrate, J. Chem. Soc., Perkin Trans. 1 (1974) 305-312. [13] N. Al-Maharik, N.P. Botting, A versatile synthesis of[2, 3, 4-13C3]isoflavones, J. Label. Compd. Radiopharm. 53 (3) (2010) 95-103. [14] F.X. Felpin, Practical and efficient Suzuki-Miyaura cross-coupling of 2-iodocycloenones with arylboronic acids catalyzed by recyclable Pd(0)/C, J. Org. Chem. 70 (21) (2005) 8575-8578. [15] K.F. Biegasiewicz, J.D.S. Denis, V.M. Carroll, R. Priefer, An efficient synthesis of daidzein, dimethyldaidzein, and isoformononetin, Tetrahedron Lett. 51 (33) (2010) 4408-4410. [16] K.F. Biegasiewicz, J.S. Gordon, D.A. Rodriguez, R. Priefer, Development of a general approach to the synthesis of a library of isoflavonoid derivatives, Tetrahedron Lett. 55 (37) (2014) 5210-5212. [17] J.P. Wan, Z. Tu, Y.Y. Wang, Transient and recyclable halogenation coupling (TRHC) for isoflavonoid synthesis with site-selective arylation, Chemistry 25 (28) (2019) 6907-6910. [18] K. Wahala, T.A. Hase, Expedient synthesis of polyhydroxyisoflavones, J. Chem. Soc., Perkin Trans. 1 (12) (1991) 3005-3008. [19] S. Balasubramanian, M.G. Nair, An efficient “one pot” synthesis of isoflavones, Synth. Commun. 30 (3) (2000) 469-484. [20] S. Sepulveda-Boza, G. H. Walizei, M. C. Rezende, Y. Vasquez, C. Mascayano, L. Mejias. The Preparation of New Isoflavones. Synth. Commun. 31 (12) (2001) 1933-1940. [21] W.M. Li, F.M. Liu, P.F. Zhang, Synthesis of isoflavones via base catalysed condensation reaction of deoxybenzoin, J. Chem. Res. 2008 (12) (2008) 683-685. [22] C. Hai, P. Zhou, J. Ma, Y. Fang, A synthesis method of daidzein. Chinese Pat. CN116332893A (2023). [23] C. Jin, J. Li, W. Su, Ytterbium triflate catalysed Friedel-Crafts reaction using carboxylic acids as acylating reagents under solvent-free conditions, J. Chem. Res. 2009 (2009) 607-611. [24] G.C. Liu, B. Xu, Hydrogen bond donor solvents enabled metal and halogen-free Friedel-Crafts acylations with virtually no waste stream, Tetrahedron Lett. 59 (10) (2018) 869-872. [25] J.C. Onwuka, E.B. Agbaji, V.O. Ajibola, F.G. Okibe, Thermodynamic pathway of lignocellulosic acetylation process, BMC Chem. 13 (1) (2019) 79. [26] M.O. Adebajo, R.L. Frost, Acetylation of raw cotton for oil spill cleanup application: An ftir and 13c mas nmr spectroscopic investigation, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60 (10) (2004) 2315-2321. [27] S.R. Koppolu, N. Naveen, R. Balamurugan, Triflic acid promoted direct α-alkylation of unactivated ketones using benzylic alcohols via in situ formed acetals, J. Org. Chem. 79 (13) (2014) 6069-6078. [28] Q.M. Zhang, P. Mischnick, Borate-mediated stereo- and topo-selective methylation of 1, 4-β-glucomannan, Macromol. Chem. Phys. 219 (6) (2018) 1700502. [29] A. Mahmood, T. Akram, M. Kiani, T. Akram, X.Q. Tian, Y.W. Sun, Mechanism and regioselectivity in methylation of nitronates[CH2NO2]-: resonance vs. inductive effects, New J. Chem. 46 (34) (2022) 16593-16602. [30] Y. Wang, Y. Yuan, C.H. Xing, L. Lu, Trifluoromethanesulfonic acid-catalyzed solvent-free bisindolylation of trifluoromethyl ketones, Tetrahedron Lett. 55 (5) (2014) 1045-1048. [31] M. Guisnet, D.B. Lukyanov, F. Jayat, P. Magnoux, I. Neves, Kinetic modeling of phenol acylation with acetic acid on HZSM5, Ind. Eng. Chem. Res. 34 (5) (1995) 1624-1629. [32] M.K. Montanez Valencia, C.L. Padro, M.E. Sad, Gas phase acylation of guaiacol with acetic acid on acid catalysts, Appl. Catal. B Environ. 278 (2020) 119317. [33] I. Neves, F. Jayat, P. Magnoux, G. Perot, F.R. Ribeiro, M. Gubelmann, M. Guisnet, Acylation of phenol with acetic acid over a HZSM5 zeolite, reaction scheme, J. Mol. Catal. 93 (2) (1994) 169-179. [34] A.J. Hoefnagel, H. van Bekkum, Direct fries reaction of resorcinol with benzoic acids catalyzed by zeolite H-beta, Appl. Catal. A Gen. 97 (2) (1993) 87-102. [35] F. Jayat, M.J. Sabater Picot, M. Guisnet, Solvent effects in liquid phase Fries rearrangement of phenyl acetate over a HBEA zeolite, Catal. Lett. 41 (3) (1996) 181-187. [36] S.F. Teloxa, S.C.D. Kennington, M. Camats, P. Romea, F. Urpi, G. Aullon, M. Font-Bardia, Direct, enantioselective, and nickel(II) catalyzed reactions of N-azidoacetyl thioimides with trimethyl orthoformate: A new combined methodology for the rapid synthesis of lacosamide and derivatives, Chem. 26 (50) (2020) 11540-11548. [37] Y. Janin, C. Huel, G. Flad, S. Thirot, Methyl orthocarboxylates as methylating agents of heterocycles, Eur. J. Org. Chem. 2002 (11) (2002) 1763-1769. |