[1] J.C. Zhang, X.L. Li, Q.Z. Qin, Y.B. Wang, X. Gao, Study on overlying strata movement patterns and mechanisms in super-large mining height stopes, Bull. Eng. Geol. Environ. 82 (4) (2023) 142. [2] C.S. Zheng, B.Y. Jiang, S. Xue, Z.W. Chen, H. Li, Coalbed methane emissions and drainage methods in underground mining for mining safety and environmental benefits: A review, Process. Saf. Environ. Prot. 127 (2019) 103-124. [3] X.F. Liu, X.Q. Jia, Y. Niu, B.S. Nie, C.P. Zhang, D.Z. Song, Alterations in coal mechanical properties and permeability influenced by liquid CO2 phase change fracturing, Fuel 354 (2023) 129254. [4] G.W. Lu, C.T. Wei, J.L. Wang, R.Y. Meng, L. Soh Tamehe, Influence of pore structure and surface free energy on the contents of adsorbed and free methane in tectonically deformed coal, Fuel 285 (2021) 119087. [5] H.S. Song, B.B. Li, J.H. Li, P.P. Ye, S.L. Duan, Y.N. Ding, An apparent permeability model in organic shales: Coupling multiple flow mechanisms and factors, Langmuir 39 (11) (2023) 3951-3966. [6] S. Giffin, R. Littke, J. Klaver, J.L. Urai, Application of BIB-SEM technology to characterize macropore morphology in coal, Int. J. Coal Geol. 114 (2013) 85-95. [7] Y.X. Zhao, S.M. Liu, D. Elsworth, Y.D. Jiang, J. Zhu, Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy, Energy Fuels 28 (6) (2014) 3704-3711. [8] B.S. Nie, X.F. Liu, L.L. Yang, J.Q. Meng, X.C. Li, Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy, Fuel 158 (2015) 908-917. [9] S.M. Liu, H.T. Sun, D.M. Zhang, K. Yang, X.L. Li, D.K. Wang, Y.N. Li, Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics, Energy 275 (2023) 127470. [10] X.Q. He, X.F. Liu, B.S. Nie, D.Z. Song, FTIR and Raman spectroscopy characterization of functional groups in various rank coals, Fuel 206 (2017) 555-563. [11] M.M. Labani, R. Rezaee, A. Saeedi, A. Al Hinai, Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: A case study from the Perth and Canning Basins, Western Australia, J. Petrol. Sci. Eng. 112 (2013) 7-16. [12] M.L. Wang, Q.C. Yu, Pore structure characterization of Carboniferous shales from the eastern Qaidam Basin, China: Combining helium expansion with low-pressure adsorption and mercury intrusion, J. Petrol. Sci. Eng. 152 (2017) 91-103. [13] S.M. Liu, X.L. Li, Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics, Environ. Sci. Pollut. Res. Int. 30 (13) (2023) 36080-36097. [14] X.G. Kong, M.Z. Zhan, Y.C. Cai, C.L. Zhang, E.Y. Wang, S.G. Li, S.R. Yang, D. He, Experimental and simulation researches of loaded stress and gas environment on dynamics properties of gas-bearing coal during impact failure process, Bull. Eng. Geol. Environ. 83 (1) (2023) 16. [15] X.G. Kong, D. He, X.F. Liu, E.Y. Wang, S.G. Li, T. Liu, P.F. Ji, D.Y. Deng, S.R. Yang, Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process, Energy 242 (2022) 123028. [16] K. Jian, X.H. Fu, Y.M. Ding, H.D. Wang, T. Li, Characteristics of pores and methane adsorption of low-rank coal inChina, J. Nat. Gas Sci. Eng. 27 (2015) 207-218. [17] Y.D. Cai, D.M. Liu, Z.J. Pan, Y.B. Yao, J.Q. Li, Y.K. Qiu, Pore structure and its impact on CH4adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China, Fuel 103 (2013) 258-268. [18] C. Peng, C.C. Zou, Y.Q. Yang, G.H. Zhang, W.W. Wang, Fractal analysis of high rank coal from southeast Qinshui Basin by using gasadsorption and mercury porosimetry, J. Petrol. Sci. Eng. 156 (2017) 235-249. [19] L. Zhou, J.S. Zhang, Y.P. Zhou, A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges, Langmuir 17 (18) (2001) 5503-5507. [20] M.N. Nounou, H.N. Nounou, Multiscale estimation of the Freundlich adsorption isotherm, Int. J. Environ. Sci. Technol. 7 (3) (2010) 509-518. [21] I.E. Men’shchikov, A.A. Fomkin, A.B. Arabei, A.V. Shkolin, E.M. Strizhenov, Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin-Astakhov equation, Prot. Met. Phys. Chem. Surf. 52 (4) (2016) 575-580. [22] S. Ozawa, S. Kusumi, Y. Ogino, Physical adsorption of gases at high pressure. IV. An improvement of the Dubinin-Astakhov adsorption equation, J. Colloid Interface Sci. 56 (1) (1976) 83-91. [23] K.R. Matranga, A.L. Myers, E.D. Glandt, Storage of natural gas by adsorption on activated carbon, Chem. Eng. Sci. 47 (7) (1992) 1569-1579. [24] S.G. Li, Y. Bai, H.F. Lin, C.M. Shu, M. Yan, L.W. Bin, Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen, Fuel 255 (2019) 115775. [25] K. Mosher, J.J. He, Y.Y. Liu, E. Rupp, J. Wilcox, Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems, Int. J. Coal Geol. 109-110 (2013) 36-44. [26] H.X. Hu, L. Du, Y.F. Xing, X.C. Li, Detailed study on self- and multicomponent diffusion of CO2-CH4gas mixture in coal by molecular simulation, Fuel 187 (2017) 220-228. [27] X.F. Sun, Y.Y. Zhang, K. Li, Z.Y. Gai, A new mathematical simulation model for gas injection enhanced coalbed methane recovery, Fuel 183 (2016) 478-488. [28] G.W. Yue, C.L. Zeng, X.J. Zheng, L.P. Huo, Prediction for CH4adsorption isotherm based on DA model, Chin. J. Process. Eng. 18 (5) (2018) 1045-1051. [29] S.W. Zhou, H.Y. Wang, H.Q. Xue, W. Guo, X.B. Li, Supercritical methane adsorption on shale gas: Mechanism and model, Chin. Sci. Bull. 62 (35) (2017) 4189-4200. [30] S. Zhang, S. Tang, S. Meng, D. Xin, Y. Zhang. X. Wang, Water-bearing characteristics of coal reservoirs and its control mechanism on coalbed methane production, J. China Coal Society (2023) 1-20. (in Chinese). [31] J. Xiong, X.J. Liu, L.X. Liang, M. Lei, Improved Dubibin-Astakhov model for shale-gas supercritical adsorption, Acta Petrolei Sin. 36 (7) (2015) 849-857. [32] V.A. Astakhov, M.M. Dubinin, Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents, Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (1971) 13-16. [33] Suyang, Z., Chuanliang, L.I., Zhimin, D.U., Xiaolong, P. Discussion on Liquid Phase Adsorption of Coalbed Methane, Xinjiang Petroleum Geology 36 (05) 2015 620-623. (in Chinese). [34] S.Y. Zhu, C.L. Li, Z.M. Du, Z., X.L. Peng, Compound desorption model of coalbed methane, Journal of China University of Mining & Technology, 45 (02) 2016 319-327. (in Chinese). [35] Q.Y. Tu, Y.P. Cheng, T. Ren, Z.Y. Wang, J. Lin, Y. Lei, Role of tectonic coal in coal and gas outburst behavior during coal mining, Rock Mech. Rock Eng. 52 (11) (2019) 4619-4635. [36] H.F. Lin, J.T. Bu, M. Yan, Y. Bai, Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method, J. Xi'an Univ. Sci. Technol. 39 (1) (2019) 1-8. [37] L. Tian, Molecular simulation study of the adsorption of methane and carbon dioxide in bituminous coal model, Master Thesis, China Uni. Min. Tec., China, 2014. (in Chinese). [38] P. Billemont, B. Coasne, G. De Weireld, Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: Effect of surface chemistry, water content, and pore disorder, Langmuir 29 (10) (2013) 3328-3338. [39] P. Billemont, B. Coasne, G. De Weireld, An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water, Langmuir 27 (3) (2011) 1015-1024. |