[1] L.P. Han, S.X. Cai, M. Gao, J.Y. Hasegawa, P.L. Wang, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev. 119 (19) (2019) 10916-10976. [2] M. Kim, S. Cho, K. Jang, S. Hong, J. Na, I. Moon, Data-driven robust optimization for minimum nitrogen oxide emission under process uncertainty, Chem. Eng. J. 428 (2022) 130971. [3] R.N. Yang, Z.H. Gao, M. Sun, G.Y. Fu, G. Cheng, W.Y. Liu, X.B. Yang, X.Y. Zhao, L. Yu, A highly active VO-MnO/CeO2 for selective catalytic reduction of NO: The balance between redox property and surface acidity, J. Rare Earths 39 (11) (2021) 1370-1381. [4] H.H. Li, W. Zhao, L.C. Wu, Q. Wang, D.H. Shang, Q. Zhong, Boosting low-temperature selective catalytic reduction of NO with NH3 of V2O5/TiO2 catalyst via B-doping, Chin. J. Chem. Eng. 44 (2022) 377-383. [5] W.J. Zhang, G.F. Liu, J. Jiang, Y.C. Tan, Q. Wang, C.H. Gong, D.K. Shen, C.F. Wu, Temperature sensitivity of the selective catalytic reduction (SCR) performance of Ce-TiO2 in the presence of SO2, Chemosphere 243 (2020) 125419. [6] X.M. Wu, Z.Y. Chen, X.L. Yu, Z.W. Huang, H.Z. Shen, G.H. Jing, Mechanism by which three-dimensional ordered mesoporous CeO2 promotes the activity of VOx-MnOx/CeO2 catalysts for NOx abatement: Atomic-scale insight into the catalytic cycle, Chem. Eng. J. 399 (2020) 125629. [7] P. Sazama, R. Pilar, L. Mokrzycki, A. Vondrova, D. Kaucky, J. Plsek, S. Sklenak, P. Stastny, P. Klein, Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NOx, Appl. Catal. B Environ. 189 (2016) 65-74. [8] J. Ding, X. Huang, Q.L. Yang, L.Z. Wang, Y. Peng, J.H. Li, J. Huang, Micro-structured Cu-ZSM-5 catalyst on aluminum microfibers for selective catalytic reduction of NO by ammonia, Catal. Today 384-386 (2022) 106-112. [9] W.T. Lv, P.T. Meng, Z.F. Qin, J.F. Li, M. Dong, J.G. Wang, W.B. Fan, A comparison of Al-rich Cu-SSZ-13 zeolites synthesized by different methods in their Al distribution, hydrothermal stability and catalytic performance in the selective catalytic reduction of NOx with NH3, Microporous Mesoporous Mater. 313 (2021) 110851. [10] H.W. Zhao, X.M. Wu, Z.W. Huang, Z.Y. Chen, G.H. Jing, A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NO with NH3, Chin. J. Chem. Eng. 45 (2022) 68-77. [11] B. Guan, J.Y. Chen, J.F. Guo, Z.Q. Liu, C.Z. Zheng, J.F. Zhou, T.X. Su, Y.Y. Zhang, Y.H. Yuan, H.T. Dang, B.Y. Xu, C.Z. Xu, W.B. Zeng, Z. Huang, Study on effect and mechanism of alkaline earth metal poisoning on Cu/SSZ-13 catalysts for selective catalytic reduction of NOx with NH3, Ind. Eng. Chem. Res. 62 (25) (2023) 9662-9672. [12] J.B. He, S. Impeng, J. Zhang, J.P. Zhang, P.L. Wang, D.S. Zhang, SO2- tolerant NOx reduction over SO42--coordinated Cu-SAPO-34 catalysts via protecting the reduction and re-oxidation of Cu sites, Chem. Eng. J. 448 (2022) 137720. [13] G.Y. Fu, R.N. Yang, Y.Q. Liang, X.F. Yi, R. Li, N.N. Yan, A.M. Zheng, L. Yu, X.B. Yang, J.X. Jiang, Enhanced hydrothermal stability of Cu/SSZ-39 with increasing Cu contents, and the mechanism of selective catalytic reduction of NO, Microporous Mesoporous Mater. 320 (2021) 111060. [14] N.N. Yan, C. Ma, Y. Cao, X.N. Liu, L. Cao, P. Guo, P. Tian, Z.M. Liu, Rational design of a novel catalyst Cu-SAPO-42 for NH3-SCR reaction, Small 16 (33) (2020) 2000902. [15] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B Environ. 202 (2017) 346-354. [16] Z.C. Zhao, R. Yu, R.R. Zhao, C. Shi, H. Gies, F.S. Xiao, D. De Vos, T. Yokoi, X.H. Bao, U. Kolb, M. Feyen, R. McGuire, S. Maurer, A. Moini, U. Muller, W.P. Zhang, Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability, Appl. Catal. B Environ. 217 (2017) 421-428. [17] R.N. Yang, L. Yu, X.Y. Zhao, X.B. Yang, Z.H. Gao, G.Y. Fu, J.X. Jiang, W.L. Lian, W.Y. Liu, Q. Fan, Phi zeolite synthesized by template-free method for selective catalytic reduction of NO, CIESC J. 71 (12) (2020) 5578-5588. [18] T. Usui, Z.D. Liu, S. Ibe, J. Zhu, C. Anand, H. Igarashi, N. Onaya, Y. Sasaki, Y. Shiramata, T. Kusamoto, T. Wakihara, Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce, ACS Catal. 8 (10) (2018) 9165-9173. [19] D.Y. Guo, R.T. Guo, C.P. Duan, Y.Z. Liu, G.L. Wu, Y. Qin, W.G. Pan, The enhanced K resistance of Cu-SSZ-13 catalyst for NH3-SCR reaction by the modification with Ce, Mol. Catal. 502 (2021) 111392. [20] H. Lee, I. Song, S.W. Jeon, D.H. Kim, Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity, Catal. Sci. Technol. 11 (14) (2021) 4838-4848. [21] J.G. Wang, J.Z. Liu, X.J. Tang, C. Xing, T.S. Jin, The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NOx with NH3, Chem. Eng. J. 418 (2021) 129433. [22] F. Gao, Y.L. Wang, N.M. Washton, M. Kollar, J. Szanyi, C.H.F. Peden, Effects of alkali and alkaline earth cocations on the activity and hydrothermal stability of Cu/SSZ-13 NH3-SCR catalysts, ACS Catal. 5 (11) (2015) 6780-6791. [23] M.Y. Chen, J.Y. Li, W.J. Xue, S. Wang, J.F. Han, Y.Z. Wei, D.H. Mei, Y. Li, J.H. Yu, Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NO x, J. Am. Chem. Soc. 144 (28) (2022) 12816-12824. [24] L.M. Huang, X.M. Wang, S.L. Yao, B.Q. Jiang, X.Y. Chen, X. Wang, Cu-Mn bimetal ion-exchanged SAPO-34 as an active SCR catalyst for removal of NO from diesel engine exhausts, Catal. Commun. 81 (2016) 54-57. [25] C.M. Song, L.H. Zhang, Z.G. Li, Y.R. Lu, K.X. Li, Co-exchange of Mn: A simple method to improve both the hydrothermal stability and activity of Cu-SSZ-13 NH3-SCR catalysts, Catalysts 9 (5) (2019) 455. [26] G. Yang, Y. Wang, D.H. Zhou, J.Q. Zhuang, X.C. Liu, X.W. Han, X.H. Bao, On configuration of exchanged La3+ on ZSM-5: A theoretical approach to the improvement in hydrothermal stability of La-modified ZSM-5 zeolite, J. Chem. Phys. 119 (18) (2003) 9765-9770. [27] S.H. Li, H.Y. Kong, W.P. Zhang, A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions, Ind. Eng. Chem. Res. 59 (13) (2020) 5675-5685. [28] X.L. Li, J.J. Feng, Z.G. Xu, J.Q. Wang, Y.J. Wang, W. Zhao, Cerium modification for improving the performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3, React. Kinet. Mech. Catal. 128 (1) (2019) 163-174. [29] Z.H. Wang, X. Xu, Y. Zhu, H. He, N.L. Wang, X.B. Yang, L.C. Liu, One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures, Microp. Mesop. Mater. 333 (2022) 111720. [30] J. Ji, X.L. Lu, C. Chen, M. He, H.B. Huang, Potassium-modulated δ-MnO2 as robust catalysts for formaldehyde oxidation at room temperature, Appl. Catal. B Environ. 260 (2020) 118210. [31] S.H. Sui, P.Y. Zhang, H.Y. Zhang, R.R. Cao, Low-temperature catalytic degradation of the odorous pollutant hexanal by γ-MnOOH: The effect of Mn vacancies, Chin. J. Catal. 40 (10) (2019) 1525-1533. [32] J.X. Liu, Y.H. Du, J. Liu, Z. Zhao, K. Cheng, Y.S. Chen, Y.C. Wei, W.Y. Song, X. Zhang, Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3, Appl. Catal. B Environ. 203 (2017) 704-714. [33] U. Deka, A. Juhin, E.A. Eilertsen, H. Emerich, M.A. Green, S.T. Korhonen, B.M. Weckhuysen, A.M. Beale, Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction, J. Phys. Chem. C 116 (7) (2012) 4809-4818. [34] S.T. Korhonen, D.W. Fickel, R.F. Lobo, B.M. Weckhuysen, A.M. Beale, Isolated Cu2+ ions: Active sites for selective catalytic reduction of NO, Chem. Commun. 47 (2) (2011) 800-802. [35] M.H. Xu, J. Wang, T. Yu, J.Q. Wang, M.Q. Shen, New insight into Cu/SAPO-34 preparation procedure: Impact of NH4-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH3-SCR catalysts, Appl. Catal. B Environ. 220 (2018) 161-170. [36] S.J. Ming, L. Pang, C. Fan, W. Guo, Y.H. Dong, P. Liu, Z. Chen, T. Li, Chemical deactivation of Cu-SAPO-18 deNO catalyst caused by basic inorganic contaminants in diesel exhaust, Chin. J. Catal. 40 (4) (2019) 590-599. [37] N. Zhu, W.P. Shan, Y.L. Shan, J.P. Du, Z.H. Lian, Y. Zhang, H. He, Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3, Chem. Eng. J. 388 (2020) 124250. [38] D. Wang, Y. Peng, Q.L. Yang, F.Y. Hu, J.H. Li, J. Crittenden, NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity, Catal. Today 332 (2019) 42-48. [39] M. Jablonska, R. Palkovits, Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-recent trends and open challenges, Appl. Catal. B Environ. 181 (2016) 332-351. [40] A. Sultana, T. Nanba, M. Haneda, M. Sasaki, H. Hamada, Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3. Appl. Catal. B: Environ. 101 (2010) 61-67. [41] F. Benaliouche, Y. Boucheffa, P. Ayrault, S. Mignard, P. Magnoux, NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites. Micro. Meso. Mater. 111 (2008) 80-88. [42] Z.X. Chen, M.Q. Shen, C. Wang, J.Q. Wang, J. Wang, G.R. Shen, Improvement of alkali metal resistance for NH3-SCR catalyst Cu/SSZ-13: Tune the crystal size, Catalysts 11 (8) (2021) 979. [43] Z. Liu, Y. Yi, J. Li, S.I. Woo, B. Wang, X. Cao, Z. Li, A superior catalyst with dual redox cycles for the selective reduction of NO(x) by ammonia, Chem. Commun. 49 (70) (2013) 7726-7728. [44] D.L. Yuan, X.Y. Li, Q.D. Zhao, J.J. Zhao, S.M. Liu, M.Tade, Effect of surface Lewis acidity on selective catalytic reduction of NO by C3H6 over calcined hydrotalcite, Appl. Catal. A Gen. 451 (2013) 176-183. [45] W.Y. Liu, Z.H. Gao, X.Y. Zhao, J.J. Gao, R.N. Yang, L. Yu, Promotion effect of chromium on the activity and SO2 resistance of CeO2-TiO2 catalysts for the NH3-SCR reaction, Ind. Eng. Chem. Res. 60 (31) (2021) 11676-11688. [46] Y.L. Shan, J.P. Du, Y.B. Yu, W.P. Shan, X.Y. Shi, H. He, Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. Appl. Catal. B: Enviro. 266 (2020) 118655. [47] Y. Ma, X.D. Wu, S.Q. Cheng, L.M. Cao, L.P. Liu, Y.F. Xu, J.B. Liu, R. Ran, Z.C. Si, D. Weng, Relationships between copper speciation and Broensted acidity evolution over Cu-SSZ-13 during hydrothermal aging, Appl. Catal. A Gen. 602 (2020) 117650. [48] L.J. Jiang, Q.C. Liu, G.J. Ran, M. Kong, S. Ren, J. Yang, J.L. Li, V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO. Chem. Eng. J. 370 (2019) 810-821. [49] Y.L. Li, W.M. Liu, R. Yan, J. Liang, T. Dong, Y.Y. Mi, P. Wu, Z. Wang, H.G. Peng, T.C. An, Hierarchical three-dimensionally ordered macroporous Fe-V binary metal oxide catalyst for low temperature selective catalytic reduction of NOx from marine diesel engine exhaust, Appl. Catal. B Environ. 268 (2020) 118455. [50] Y. Jangjou, Q. Do, Y.T. Gu, L.G. Lim, H. Sun, D. Wang, A. Kumar, J.H. Li, L.C. Grabow, W.S. Epling, Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure, ACS Catal. 8 (2) (2018) 1325-1337. [51] C.L. Yu, B.C. Huang, L.F. Dong, F. Chen, Y. Yang, Y.M. Fan, Y.X. Yang, X.Q. Liu, X.N. Wang, Effect of Pr/Ce addition on the catalytic performance and SO 2 resistance of highly dispersed MnO x/SAPO-34 catalyst for NH 3-SCR at low temperature, Chem. Eng. J. 316 (2017) 1059-1068. [52] R.V. Siriwardane, J.A. Poston, E.P. Fisher, M.S. Shen, A.L. Miltz, Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study, Appl. Surf. Sci. 152 (3-4) (1999) 219-236. [53] L.Q. Mao, A. T-Raissi, C.P. Huang, N.Z. Muradov, Thermal decomposition of (NH4)2SO4 in presence of Mn3O4, Int. J. Hydrog. Energy 36 (10) (2011) 5822-5827. [54] H. Liu, Z.X. Fan, C.Z. Sun, S.H. Yu, S. Feng, W. Chen, D.Z. Chen, C.J. Tang, F. Gao, L. Dong, Improved activity and significant SO2 tolerance of samarium modified CeO2-TiO2 catalyst for NO selective catalytic reduction with NH3. Appl. Catal. B: Environ. 244 (2019) 671-683. [55] J. Li, Study of optimized engine-bench evaluation methods of urea-SCR catalyst for diesel vehicle applications, Ph. D. Thesis, Tianjin Univ., China, 2015. |