[1] L. Zhao, Z. Li, F. Xi, S. Li, W. Ma, J. Wu, K. Wei, Purification of organosilicon waste silicon powder with hydrometallurgy, Metals 13 (2023) 950. [2] N.D. Vu, A. Boulegue-Mondiere, N. Durand, J. Raynaud, V. Monteil, Back-to-cyclic monomers: chemical recycling of silicone waste using a [polydentate ligand-potassium silanolate] complex, Green Chem. 25 (2023) 3869-3877. [3] Y. Zhang, J. Li, H.Z. Liu, Y.J. Ji, Z.Y. Zhong, F.B. Su, Recent advances in rochow-Muller process research: driving to molecular catalysis and to A more sustainable silicone industry, ChemCatChem 11 (12) (2019) 2757-2779. [4] X.L. Guo, Z.Y. Zhang, P. Xing, S. Wang, Y.B. Guo, Y.X. Zhuang, Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant, Chin. J. Chem. Eng. 60 (2023) 228-234. [5] Y.B. Cheng, M.S. Shen, H.K. Huang, Y. Wang, W.Y. Xu, M.Y. Liao, X. Chen, Redistribution mechanism on the preparation of dichlorodimethylsilane by the ZnCl2/MIL-53(Al) catalyst, Chem. Phys. Lett. 788 (2022) 139302. [6] C. Li, Y. Wang, G. Chen, Q. Li, X. Gu, X. Li, Y. Wang, Z. Zhu, J. Li, Thermodynamic analysis and process optimization of organosilicon distillation systems, Energy 252 (2022) 124006. [7] J. Huser, S. Bistac, C. Delaite, D. Dentel, M. Derivaz, M. Zanouni, Hydrolysis and grafting of dimethylalkoxysilanes onto stainless steel, Surf. Interface Anal. 47 (2015) 523-528. [8] T. Harigaya, R. Kajiya, H. Wada, K. Kuroda, A. Shimojima, Photomechanical organosiloxane films derived from azobenzene-modified di- and tri-alkoxysilanes, J. Sol Gel Sci. Technol. 104 (3) (2022) 659-665. [9] H. Apsey, D. Hill, A.R. Barron, S. Alexander, Slippery alkoxysilane coatings for antifouling applications, ACS Appl. Mater. Interfaces 15 (13) (2023) 17353-17363. [10] F. Luo, C. Pan, J. Cheng, The application of trialkoxysilane as transmetallation reagent in organic synthesis, Curr. Org. Chem. 15 (2011) 2816-2829. [11] F. Chigondo, B. Zeelie, P. Watts, Selective direct synthesis of trialkoxysilanes in a packed bed flow tubular reactor, ACS Sustainable Chem. Eng. 4 (11) (2016) 6237-6243. [12] K. Su, Y. Ji, X. Zhou, X. Jiang, H. Li, Y. Zhu, J. Li, H. Liu, J. Xiao, Z. Zhong, F. Su, Approach to generating the right active phase in the “direct” synthesis of trimethoxysilanes using the CuCl-Cu2O catalyst, Appl. Surf. Sci. 544 (2021) 148915. [13] A.L. Wang, M.M. Zhang, H.B. Yin, S.X. Liu, M.K. Liu, T.J. Hu, Direct reaction between silicon and methanol over Cu-based catalysts: investigation of active species and regeneration of CuCl catalyst, RSC Adv. 8 (34) (2018) 19317-19325. [14] N.Y. Adonin, S.A. Prikhod’ko, A.Y. Shabalin, I.P. Prosvirin, V.I. Zaikovskii, D.I. Kochubey, D.A. Zyuzin, V.N. Parmon, E.A. Monin, I.A. Bykova, P.O. Martynov, S.L. Rusakov, P.A. Storozhenko, The “direct” synthesis of trialkoxysilanes: new data for understanding the processes of the copper-containing active sites formation during the activation of the initial silicon based contact mass, J. Catal. 338 (2016) 143-153. [15] S.H. Kareem, F.A. ALSaady, N.A. Hikmat, Catalyzed direct reaction of methanol with silicon, J. Assoc. Arab Univ. Basic Appl. Sci. 12 (1) (2012) 27-32. [16] Y.W. Ji, M.L. Xu, R.L. Guo, W.C. Peng, J.S. Zhang, J.L. Zhang, Cu3Si formed by vacuum evaporation deposition enhances hydrogenation of silicon tetrachloride, Sol. Energ. Mat. Sol. C. 260 (2023) 112484. [17] A.R. Kim, T.U. Yoon, E.J. Kim, J.W. Yoon, S.Y. Kim, J.W. Yoon, Y.K. Hwang, J.S. Chang, Y.S. Bae, Facile loading of Cu(I) in MIL-100(Fe) through redox-active Fe(II) sites and remarkable propylene/propane separation performance, Chem. Eng. J. 331 (2018) 777-784. [18] V.N. Le, T.K. Vo, J.H. Lee, J.C. Kim, T.H. Kim, K.H. Oh, Y.S. Bae, S.K. Kwak, J. Kim, A novel approach to prepare Cu(I)Zn@MIL-100(Fe) adsorbent with high CO adsorption capacity, CO/CO2 selectivity and stability via controlled host-guest redox reaction, Chem. Eng. J. 404 (2021) 126492. [19] J.H. Ma, L. Li, J. Ren, R.F. Li, CO adsorption on activated carbon-supported Cu-based adsorbent prepared by a facile route, Sep. Purif. Technol. 76 (1) (2010) 89-93. [20] N.Y. Adonin, S.A. Prikhod’ko, A.Y. Shabalin, I.P. Prosvirin, V.I. Zaikovskii, D.I. Kochubey, D.A. Zyuzin, V.N. Parmon, E.A. Monin, I.A. Bykova, P.O. Martynov, S.L. Rusakov, P.A. Storozhenko, Synthesis and structural features of nanostructured cuprous chloride with high catalytic activity, Silicon 7 (2) (2015) 79-87. [21] F. Gao, Y. Wang, S. Wang, Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: equilibrium and thermodynamics, Chem. Eng. J. 290 (2016) 418-427. [22] Z. Zhang, Y. Ji, J. Li, Y. Zhu, Z. Zhong, F. Su, Porous (CuO)xZnO hollow spheres as efficient Rochow reaction catalysts, CrystEngComm 18 (2016) 2808-2819. [23] X. Chen, L.H. Jia, Y.L. Wang, L.Y. Song, Y.X. Zhu, W.Y. Liu, Z.Y. Zhong, F.B. Su, Solvothermal synthesis of copper (I) chloride microcrystals with different morphologies as copper-based catalysts for dimethyldichlorosilane synthesis, J. Colloid Interface Sci. 404 (2013) 16-23. [24] H.Z. Liu, Y.J. Ji, X.J. Zou, J. Li, Y. Zhang, X.G. Wang, Z. Zhong, F. Su, Controlled synthesis of heterostructured SnO2-CuO composite hollow microspheres as efficient Cu-based catalysts for the rochow reaction, Catalysts 8 (2018) 144. [25] Y. Zhang, Y.J. Ji, J. Li, H.Z. Liu, Z.Y. Zhong, F.B. Su, Hierarchical zinc-copper oxide hollow microspheres as active Rochow reaction catalysts: The Formation and effect of charge transferable interfaces, J. Catal. 348 (2017) 233-245. [26] S.Y. Zou, Y.J. Ji, J. Li, Y. Zhang, Z.Y. Jin, L.H. Jia, X.F. Guo, Z.Y. Zhong, F.B. Su, Novel leaflike Cu-O-Sn nanosheets as highly efficient catalysts for the Rochow reaction, J. Catal. 337 (2016) 1-13. [27] J. Li, Z. Ni, Y. Ji, Y. Zhu, H. Liu, Y. Zhang, X.Q. Gong, Z. Zhong, F. Su, ZnO supported on Cu2O{100} enhances charge transfer in dimethyldichlorosilane synthesis, J. Catal. 374 (2019) 284-296. [28] G.D. Su, A.L. Wang, M.M. Zhang, H.B. Yin, G.X. Wang, Selective synthesis of triethoxysilane and tetraethoxysilane through direct reaction between ethanol and silicon catalyzed by CuCl and metallic Cu0 nanoparticles in fixed-bed reactor, Silicon 14 (2) (2022) 573-580. [29] L.A.R. Giusto, F.L. Pissetti, Polydimethylsiloxane amino functionalized sponge for adsorption of copper in water, J. Sol Gel Sci. Technol. 99 (1) (2021) 243-251. [30] J. Han, J. Cho, M.E. Lee, B. Yoo, Slurry phase reaction of elemental silicon with methanol in the presence of copper: direct synthesis of trimethoxysilane, Bull. Korean Chem. Soc. 30 (2009) 683-686. [31] X.Y. Jiang, Y.J. Ji, J. Li, Y.X. Zhu, T. Kang, Z.Y. Zhong, F.B. Su, G.W. Xu, Impact of oxygen vacancy in CuO-ZnO catalysts on the selectivity of dimethyldichlorosilane monomer in the Rochow reaction, Mol. Catal. 504 (2021) 111453. [32] J. Xu, S. Song, Y. Zhu, B. Jin, Y. Ji, Z. Li, D. Fu, Z. Zhong, G. Xu, F. Su, Enhancing dimethyldichlorosilane production in Rochow-Muller reaction by adding ZnO-Sn-P co-promoter in CuO/SiO2, J. Catal. 410 (2022) 280-293. [33] Y. Zhang, Y.J. Ji, J. Li, H.Z. Liu, X. Hu, Z.Y. Zhong, F.B. Su, Morphology-dependent catalytic properties of nanocupric oxides in the Rochow reaction, Nano Res. 11 (2) (2018) 804-819. [34] T.Y. Deng, L. Yan, X.L. Li, Y. Fu, Continuous hydrogenation of ethyl levulinate to 1, 4-pentanediol over 2.8Cu-3.5Fe/SBA-15 catalyst at low loading: the effect of Fe doping, ChemSusChem 12 (16) (2019) 3837-3848. [35] T.Y. Deng, G.Y. Xu, Y. Fu, One-pot cascade conversion of xylose to furfuryl alcohol over a bifunctional Cu/SBA-15-SO3H catalyst, Chin. J. Catal. 41 (3) (2020) 404-414. [36] B. Feng, L. Hao, C. Deng, J. Wang, H. Song, M. Xiao, T. Huang, Q. Zhu, H. Gai, A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater, Chin. J. Chem. Eng. 57 (2023) 338-348. [37] G. Moretti, H.P. Beck, Relationship between the auger parameter and the ground state valence charge of the core-ionized atom: the case of Cu(I) and Cu(II) compounds, Surf. Interface Anal. 51 (2019) 1359-1370. [38] Y. Yang, H.X. Yang, Y.Q. Wu, H. Pu, W.J. Meng, R.Z. Gao, D.L. Zhao, Graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets for lithium-ion battery anode with enhanced reversible capacity and cyclic performance, Electrochim. Acta 341 (2020) 136037. [39] D.J. Kim, J.E. Yie, Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan, J. Colloid Interface Sci. 283 (2) (2005) 311-315. [40] I.V. Krylova, M.P. Egorov, O.M. Nefedov, Reaction of silicon with alcohols in autoclave, Russ. Chem. Bull. 66 (2) (2017) 260-266. [41] C. Wang, G.R. Wang, J.F. Wang, A Bi-component Cu catalyst for the direct synthesis of methylchlorosilane from silicon and methyl chloride, Chin. J. Chem. Eng. 22 (2014) 299-304. [42] Z. Bai, T. Liu, Q. Liu, J. Lei, L. Gong, H. Jin, Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process, Appl. Energ. 229 (2018) 1152-1163. [43] L. Zhang, S. Hao, C. Yang, J. Li, K. Yang, C. Hu, S. Ge, Effects of double promoters on direct synthesis of triethoxysilane in gas-solid stirred fluidized bed, Appl. Organomet. Chem. 25 (2011) 508-513. [44] W. Luo, G. Wang, J. Wang, Surface morphology and catalytic activity of the contact mass in organosilane synthesis, Chem. Eng. Commun. 193 (2006) 754-763. |