[1] Z.Q. Wang, J. Sun, Z.N. Xu, G.C. Guo, CO direct esterification to dimethyl oxalate and dimethyl carbonate: the key functional motifs for catalytic selectivity, Nanoscale 12 (39) (2020) 20131-20140. [2] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev. 41 (11) (2012) 4218. [3] R.P. Ye, L. Lin, C.Q. Liu, C.C. Chen, Y.G. Yao, One-pot synthesis of cyclodextrin-doped Cu-SiO2 catalysts for efficient hydrogenation of dimethyl oxalate to ethylene glycol, ChemCatChem 9 (24) (2017) 4587-4597. [4] Z.N. Xu, J. Sun, C.S. Lin, X.M. Jiang, Q.S. Chen, S.Y. Peng, M.S. Wang, G.C. Guo, High-performance and long-lived Pd nanocatalyst directed by shape effect for CO oxidative coupling to dimethyl oxalate, ACS Catal. 3 (2) (2013) 118-122. [5] Y. Yamamoto, Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts, Catal. Surv. Asia 14 (3) (2010) 103-110. [6] F.D. Meng, G.H. Xu, R.Q. Guo, H.F. Yan, M.Q. Chen, Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst, Chem. Eng. Process. Process. Intensif. 43 (6) (2004) 785-790. [7] E.L. Jin, L.L. He, Y.L. zhang, A.R. Richard, M.H. Fan, A nanostructured CeO2 promoted Pd/α-alumina diethyl oxalate catalyst with high activity and stability, RSC Adv. 4 (90) (2014) 48901-48904. [8] C. Fan, M. Luo, W.D. Xiao, Reaction mechanism of methyl nitrite dissociation during co catalytic coupling to dimethyl oxalate: a density functional theory study, Chin. J. Chem. Eng. 24 (1) (2016) 132-139. [9] Z. Homayoon, J.M. Bowman, Quasiclassical trajectory study of CH3NO2 decomposition via roaming mediated isomerization using a global potential energy surface, J. Phys. Chem. A 117 (46) (2013) 11665-11672. [10] T.J. Zhao, D. Chen, Y.C. Dai, W.K. Yuan, A. Holmen, Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts, Ind. Eng. Chem. Res. 43 (16) (2004) 4595-4601. [11] Q.H. Li, Z.F. Zhou, R.P. Chen, B.Z. Sun, L.Y. Qiao, Y.G. Yao, K.C. Wu, Insights into the reaction mechanism of CO oxidative coupling to dimethyl oxalate over palladium: a combined DFT and IR study, Phys. Chem. Chem. Phys. 17 (14) (2015) 9126-9134. [12] H.R. Yue, X.B. Ma, J.L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, Acc. Chem. Res. 47 (5) (2014) 1483-1492. [13] C.Z. Wang, P.J. Chen, Y.K. Li, G.F. Zhao, Y. Liu, Y. Lu, In situ DRIFTS study of CO coupling to dimethyl oxalate over structured Al-fiber@ns-AlOOH@Pd catalyst, J. Catal. 344 (2016) 173-183. [14] J. Zhao, L.F. Yin, L.X. Ling, R.G. Zhang, M.H. Fan, B.J. Wang, A predicted new catalyst to replace noble metal Pd for CO oxidative coupling to DMO, Catal. Sci. Technol. 12 (8) (2022) 2542-2554. [15] Y.T. Cao, L.X. Ling, H. Lin, M.H. Fan, P. Liu, R.G. Zhang, B.J. Wang, DFT study on CO oxidative coupling to DMO over Pd4/TiO2 and Pd4/TiO2-Ov: a role of oxygen vacancy on support, Comput. Mater. Sci. 159 (2019) 1-11. [16] S.Y. Peng, Z.N. Xu, Q.S. Chen, Y.M. Chen, J. Sun, Z.Q. Wang, M.S. Wang, G.C. Guo, An ultra-low Pd loading nanocatalyst with high activity and stability for CO oxidative coupling to dimethyl oxalate, Chem. Commun. 49 (51) (2013) 5718-5720. [17] Y. Ji, G. Liu, W. Li, W.D. Xiao, The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3, J. Mol. Catal. A Chem. 314 (1-2) (2009) 63-70. [18] S.Y. Peng, Z.N. Xu, Q.S. Chen, Z.Q. Wang, D.M. Lv, J. Sun, Y.M. Chen, G.C. Guo, Enhanced stability of Pd/ZnO catalyst for CO oxidative coupling to dimethyl oxalate: effect of Mg2+ doping, ACS Catal. 5 (7) (2015) 4410-4417. [19] S.Y. Peng, Z.N. Xu, Q.S. Chen, Z.Q. Wang, Y.M. Chen, D.M. Lv, G. Lu, G.C. Guo, MgO: an excellent catalyst support for CO oxidative coupling to dimethyl oxalate, Catal. Sci. Technol. 4 (7) (2014) 1925-1930. [20] L.X. Ling, X. Feng, Y.T. Cao, P. Liu, M.H. Fan, R.G. Zhang, B.J. Wang, The catalytic CO oxidative coupling to dimethyl oxalate on Pd clusters anchored on defected graphene: a theoretical study, Mol. Catal. 453 (2018) 100-112. [21] B.Y. Han, L.X. Ling, M.H. Fan, P. Liu, B.J. Wang, R.G. Zhang, A DFT study and microkinetic analysis of CO oxidation to dimethyl oxalate over Pd stripe and Pd single atom-doped Cu(111) surfaces, Appl. Surf. Sci. 479 (2019) 1057-1067. [22] B.Y. Han, H. Lin, L.X. Ling, P. Liu, M.H. Fan, B.J. Wang, R.G. Zhang, A DFT study on dimethyl oxalate synthesis over PdML/Ni(1 1 1) and PdML/Co(1 1 1) surfaces, Appl. Surf. Sci. 465 (2019) 498-508. [23] B.Y. Han, X. Feng, L.X. Ling, M.H. Fan, P. Liu, R.G. Zhang, B.J. Wang, CO oxidative coupling to dimethyl oxalate over Pd-Me (Me = Cu, Al) catalysts: a combined DFT and kinetic study, Phys. Chem. Chem. Phys. 20 (10) (2018) 7317-7332. [24] J.X. Fan, H.X. Du, Y. Zhao, Q. Wang, Y.N. Liu, D.Q. Li, J.T. Feng, Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis, ACS Catal. 10 (22) (2020) 13560-13583. [25] J. Wang, Y.L. Qin, X. Liu, X.B. Zhang, In situ synthesis of magnetically recyclable graphene-supported Pd@Co core-shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane, J. Mater. Chem. 22 (25) (2012) 12468-12470. [26] S.H. Xie, Y.X. Liu, J.G. Deng, X.T. Zhao, J. Yang, K.F. Zhang, Z. Han, H.X. Dai, Three-dimensionally ordered macroporous CeO2-supported Pd@Co nanoparticles: highly active catalysts for methane oxidation, J. Catal. 342 (2016) 17-26. [27] K. Shen, L. Chen, J.L. Long, W. Zhong, Y.W. Li, MOFs-templated Co@Pd core-shell NPs embedded in N-doped carbon matrix with superior hydrogenation activities, ACS Catal. 5 (9) (2015) 5264-5271. [28] D. Morales-Acosta, J. Ledesma-Garcia, L.A. Godinez, H.G. Rodriguez, L. Alvarez-Contreras, L.G. Arriaga, Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation, J. Power Sources 195 (2) (2010) 461-465. [29] Z.Y. Wang, X.M. Cao, J.H. Zhu, P. Hu, Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory, J. Catal. 311 (2014) 469-480. [30] Z.J. Wei, H.Y. Liu, Y.D. Chen, D.C. Guo, R.F. Pan, Y.X. Liu, Mechanistic insights into the selective hydrogenation of resorcinol to 1, 3-cyclohexanedione over Pd/rGO catalyst through DFT calculation, Chin. J. Chem. Eng. 26 (12) (2018) 2542-2548. [31] X.R. Zhang, Ethane adsorption in single walled carbon nanotube by density functional theory, Chin. J. Chem. Eng. 10 (6) (2002): 644-649. [32] K. Shin, D.H. Kim, S.C. Yeo, H.M. Lee, Structural stability of AgCu bimetallic nanoparticles and their application as a catalyst: a DFT study, Catal. Today 185 (1) (2012) 94-98. [33] J.X. Liu, W.X. Li, Theoretical study of crystal phase effect in heterogeneous catalysis, Wires Comput. Mol. Sci. 6 (5) (2016) 571-583. [34] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter 54 (16) (1996) 11169-11186. [35] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B Condens. Matter 49 (20) (1994) 14251-14269. [36] P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (24) (1994) 17953-17979. [37] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. [38] M.P. Teter, M.C. Payne, D.C. Allan, Solution of Schrodinger’s equation for large systems, Phys. Rev. B 40 (18) (1989) 12255-12263. [39] J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71 (3) (2005) 035109. [40] G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (22) (2000) 9901-9904. [41] G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (22) (2000) 9978-9985. [42] P.H. Xiao, D. Sheppard, J. Rogal, G. Henkelman, Solid-state dimer method for calculating solid-solid phase transitions, J. Chem. Phys. 140 (17) (2014) 174104. [43] A.A. Gokhale, S. Kandoi, J.P. Greeley, M. Mavrikakis, J.A. Dumesic, Molecular-level descriptions of surface chemistry in kinetic models using density functional theory, Chem. Eng. Sci. 59 (22-23) (2004) 4679-4691. [44] J.P. Clay, J.P. Greeley, F.H. Ribeiro, W. Nicholas Delgass, W.F. Schneider, DFT comparison of intrinsic WGS kinetics over Pd and Pt, J. Catal. 320 (2014) 106-117. [45] S.N. Zhevnenko, I.S. Petrov, D. Scheiber, V.I. Razumovskiy, Surface and segregation energies of Ag based alloys with Ni, Co and Fe: Direct experimental measurement and DFT study, Acta Mater. 205 (2021) 116565. [46] B.Y. Han, L.X. Ling, R.G. Zhang, P. Liu, M.H. Fan, B.J. Wang, Dimethyl oxalate synthesis via CO oxidation on Pd-doped Ag(111) surface: a theoretic study, Mol. Catal. 484 (2020) 110731. [47] N. Saliba, J. Wang, B.A. Bansenauer, B.E. Koel, Adsorption and reaction of nitromethane (CH3NO2) on Pt(111), Surf. Sci. 389 (1-3) (1997) 147-161. [48] A. Asiaee, K.M. Benjamin, A density functional theory based elementary reaction mechanism for early steps of Fischer-Tropsch synthesis over cobalt catalyst. 2. Microkinetic modeling of liquid-phase vs. gaseous-phase process, Mol. Catal. 436 (2017) 210-217. [49] Y. Chen, H.F. Wang, R. Burch, C. Hardacre, P. Hu, New insight into mechanisms in water-gas-shift reaction on Au/CeO2(111): a density functional theory and kinetic study, Faraday Discuss. 152 (2011) 121-133;discussion 203-225. [50] X.Y. Zou, X.D. Li, X.Y. Gao, Z.H. Gao, Z.J. Zuo, W. Huang, Density functional theory and kinetic Monte Carlo simulation study the strong metal-support interaction of dry reforming of methane reaction over Ni based catalysts, Chin. J. Chem. Eng. 29 (2021) 176-182. [51] X.M. Cao, R. Burch, C. Hardacre, P. Hu, An understanding of chemoselective hydrogenation on crotonaldehyde over Pt(111) in the free energy landscape: the microkinetics study based on first-principles calculations, Catal. Today 165 (1) (2011) 71-79. [52] C. Stegelmann, A. Andreasen, C.T. Campbell, Degree of rate control: how much the energies of intermediates and transition states control rates, J. Am. Chem. Soc. 131 (23) (2009) 8077-8082. [53] C.A. Wolcott, A.J. Medford, F. Studt, C.T. Campbell, Degree of rate control approach to computational catalyst screening, J. Catal. 330 (2015) 197-207. [54] C.T. Campbell, The degree of rate control: a powerful tool for catalysis research, ACS Catal. 7 (4) (2017) 2770-2779. [55] J.X. Liu, I.A.W. Filot, Y.Q. Su, B. Zijlstra, E.J.M. Hensen, Optimum particle size for gold-catalyzed CO oxidation, J. Phys. Chem. C Nanomater. Interfaces 122 (15) (2018) 8327-8340. [56] Z.Y. Wang, H.F. Wang, P. Hu, Possibility of designing catalysts beyond the traditional volcano curve: a theoretical framework for multi-phase surfaces, Chem. Sci. 6 (10) (2015) 5703-5711. [57] J. Cho, S. Lee, S.P. Yoon, J. Han, S.W. Nam, K.Y. Lee, H.C. Ham, Role of heteronuclear interactions in selective H2 formation from HCOOH decomposition on bimetallic Pd/M (M = late transition FCC metal) catalysts, ACS Catal. 7 (4) (2017) 2553-2562. [58] F. He, K. Li, G.Y. Xie, Y. Wang, M.G. Jiao, H. Tang, Z.J. Wu, Understanding the enhanced catalytic activity of Cu1@Pd3(111) in formic acid dissociation, a theoretical perspective, J. Power Sources 316 (2016) 8-16. |