[1] S.G. Zhang, J.H. Zhang, Y. Zhang, Y.Q. Deng, Nanoconfined ionic liquids, Chem. Rev. 117 (10) (2017) 6755-6833. [2] S.S. de Jesus, R. Maciel Filho, Are ionic liquids eco-friendly? Renew. Sustain. Energy Rev. 157 (2022) 112039. [3] Y.Q. Zhang, Q.Q. Zhang, H. Xin, M.H. Lv, Z.G. Zhang, COSMO-RS prediction, liquid-liquid equilibrium experiment and quantum chemistry calculation for the separation of n-butanol and n-heptane system using ionic liquids, J. Chem. Thermodyn. 167 (2022) 106719. [4] R. Rives, A. Mialdun, V. Yasnou, V. Shevtsova, A. Coronas, Density, refractive index, and derived properties of binary mixtures of water + ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate, J. Chem. Thermodyn. 160 (2021) 106484. [5] D. Prasad, K.N. Patil, V.K. Manoorkar, R.B. Dateer, B.M. Nagaraja, A.H. Jadhav, Sustainable catalytic process for fructose dehydration using dicationic ionic liquid assisted ZSM-5 zeolite, Mater. Manuf. Process. 36 (13) (2021) 1571-1578. [6] C.B.T.L. Lee, T.Y. Wu, A review on solvent systems for furfural production from lignocellulosic biomass, Renew. Sustain. Energy Rev. 137 (2021) 110172. [7] R. Villa, E. Alvarez, R. Porcar, E. Garcia-Verdugo, S.V. Luis, P. Lozano, Ionic liquids as an enabling tool to integrate reaction and separation processes, Green Chem. 21 (24) (2019) 6527-6544. [8] C.L. Chambon, V. Fitriyanti, P. Verdia, S.M. Yang, S. Herou, M.M. Titirici, A. Brandt-Talbot, P.S. Fennell, J.P. Hallett, Fractionation by sequential antisolvent precipitation of grass, softwood, and hardwood lignins isolated using low-cost ionic liquids and water, ACS Sustainable Chem. Eng. 8 (9) (2020) 3751-3761. [9] Y.R. Gao, J.F. Cao, Y. Shu, J.H. Wang, Research progress of ionic liquids-based gels in energy storage, sensors and antibacterial, Green Chem. Eng. 2 (4) (2021) 368-383. [10] S.R. Miao, I. Hoffmann, M. Gradzielski, G.G. Warr, Lipid membrane flexibility in protic ionic liquids, J. Phys. Chem. Lett. (2022) 5240-5245. [11] J.G. Neumann, H. Stassen, Anion effect on gas absorption in imidazolium-based ionic liquids, J. Chem. Inf. Model. 60 (2) (2020) 661-666. [12] Y. Huang, Z.C. Chen, J.M. Crosthwaite, S.N.V.K. Aki, J.F. Brennecke, Thermal stability of ionic liquids in nitrogen and air environments, J. Chem. Thermodyn. 161 (2021) 106560. [13] A. Barati-Harooni, A. Najafi-Marghmaleki, A.H. Mohammadi, ANFIS modeling of ionic liquids densities, J. Mol. Liq. 224 (2016) 965-975. [14] V. Mann, R. Gani, V. Venkatasubramanian, Group contribution-based property modeling for chemical product design: A perspective in the AI era, Fluid Phase Equilib. 568 (2023) 113734. [15] T. Zhang, J. Hu, S.W. Tang, Densities and surface tensions of ionic liquids/sulfuric acid binary mixtures, Chin. J. Chem. Eng. 26 (7) (2018) 1513-1521. [16] A.S. Zimmermann, S. Mattedi, Density and speed of sound prediction for binary mixtures of water and ammonium-based ionic liquids using feedforward and cascade forward neural networks, J. Mol. Liq. 311 (2020) 113212. [17] K. Paduszynski, Extensive databases and group contribution QSPRs of ionic liquids properties. 1. density, Ind. Eng. Chem. Res. 58 (13) (2019) 5322-5338. [18] J.M. Slattery, C. Daguenet, P.J. Dyson, T.J.S. Schubert, I. Krossing, How to predict the physical properties of ionic liquids: A volume-based approach, Angew. Chem. Int. Ed Engl. 46 (28) (2007) 5384-5388. [19] C.F. Ye, J.M. Shreeve, Rapid and accurate estimation of densities of room-temperature ionic liquids and salts, J. Phys. Chem. A 111 (8) (2007) 1456-1461. [20] R.L. Gardas, J.A.P. Coutinho, Extension of the Ye and Shreeve Group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures, Fluid Phase Equilib. 263 (1) (2008) 26-32. [21] M.M. Alavianmehr, S.M. Hosseini, J. Moghadasi, Densities of ionic liquids from ion contribution-based equation of state: Electrolyte perturbation approach, J. Mol. Liq. 197 (2014) 287-294. [22] X.Y. Ji, C. Held, Modeling the density of ionic liquids with ePC-SAFT, Fluid Phase Equilib. 410 (2016) 9-22. [23] M.M. Alavianmehr, M. Taghizadehfard, S.M. Hosseini, Development of a perturbed hard-sphere equation of state for pure and mixture of ionic liquids, Ionics 22 (5) (2016) 649-660. [24] H. Bagheri, S. Ghader, Correlating ionic liquids density over wide range of temperature and pressure by volume shift concept, J. Mol. Liq. 236 (2017) 172-183. [25] H. Bagheri, M. Sadegh Hosseini, H. Ghayoumi Zadeh, B. Notej, A. Fayazi, A novel modification of ionic liquid mixture density based on semi-empirical equations using Laplacian whale optimization algorithm, Arab. J. Chem. 14 (10) (2021) 103368. [26] M. El-Harbawi, B.B. Samir, M.-R. Babaa, M.I.A. Mutalib, A new QSPR model for predicting the densities of ionic liquids, Arabian Journal for Science and Engineering.39 (2014).6767-6775. [27] F.Y. Yan, Q.Y. Shang, S.Q. Xia, Q. Wang, P.S. Ma, Application of topological index in predicting ionic liquids densities by the quantitative structure property relationship method, J. Chem. Eng. Data 60 (3) (2015) 734-739. [28] A. Najafi-Marghmaleki, A. Tatar, A. Barati-Harooni, A.H. Mohammadi, A GEP based model for prediction of densities of ionic liquids, J. Mol. Liq. 227 (2017) 373-385. [29] Y. Yu, Y.Y. Chen, Density prediction of ionic liquids at different temperatures using the average free volume model, ACS Omega 6 (23) (2021) 14869-14874. [30] J. Li, L.Y. Li, Y.W. Tong, X.N. Wang, Understanding and optimizing the gasification of biomass waste with machine learning, Green Chem. Eng. 4 (1) (2023) 123-133. [31] A. Barati-Harooni, A. Najafi-Marghmaleki, M. Arabloo, A.H. Mohammadi, An accurate CSA-LSSVM model for estimation of densities of ionic liquids, J. Mol. Liq. 224 (2016) 954-964. [32] Y.U. Paulechka, Heat capacity of room-temperature ionic liquids: A critical review, J. Phys. Chem. Ref. Data 39 (3) (2010) 033108. [33] X.J. Kang, X.Y. Liu, J.Q. Li, Y.S. Zhao, H.Z. Zhang, Heat capacity prediction of ionic liquids based on quantum chemistry descriptors, Ind. Eng. Chem. Res. 57 (49) (2018) 16989-16994. [34] R.L. Gardas, J.A.P. Coutinho, A group contribution method for heat capacity estimation of ionic liquids, Ind. Eng. Chem. Res. 47 (15) (2008) 5751-5757. [35] A. Barati-Harooni, A. Najafi-Marghmaleki, M. Arabloo, A.H. Mohammadi, Chemical structural models for prediction of heat capacities of ionic liquids, J. Mol. Liq. 232 (2017) 113-122. [36] R. Azadfar, M. Shaabanzadeh, H. Hashemi-Moghaddam, A.M. Nafchi, Estimation of heat capacity of 143 pure ionic liquids using artificial neural network, Int. J. Thermophys. 43 (6) (2022) 81. [37] Z.X. Dai, Y.F. Chen, C. Liu, X.H. Lu, Y.R. Liu, X.Y. Ji, Prediction and verification of heat capacities for pure ionic liquids, Chin. J. Chem. Eng. 31 (2021) 169-176. [38] H.S. Majdi, A.B. Faisal Raheem, S. Jasim Abdullah, I. Mourad Mohammed, Y. Yasin, A. Yadav, S.K. Hadrawi, R. Shariyati, Prediction of speed of sound and specific heat capacity of ionic liquids using predictive SAFT-based equation of state, Chem. Eng. Sci. 265 (2023) 118246. [39] M. Sattari, F. Gharagheizi, P. Ilani-Kashkouli, A.H. Mohammadi, D. Ramjugernath, Estimation of the heat capacity of ionic liquids: A quantitative structure-property relationship approach, Ind. Eng. Chem. Res. 52 (36) (2013) 13217-13221. [40] Y.Q. Chen, Y.J. Cai, K. Thomsen, G.M. Kontogeorgis, J.M. Woodley, A group contribution-based prediction method for the electrical conductivity of ionic liquids, Fluid Phase Equilib. 509 (2020) 112462. [41] J.L. Han, M.X. Li, N.N. Tian, C. Liu, Y.Y. Zhang, Z.Q. Ji, X.Y. Sun, Prediction of heat capacity of ionic liquids: A simple group contribution method, Fluid Phase Equilib. 565 (2023) 113675. [42] Z. Song, X.X. Li, H. Chao, F. Mo, T. Zhou, H.Y. Cheng, L.F. Chen, Z.W. Qi, Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process, Green Energy Environ. 4 (2) (2019) 154-165. [43] S. Kujawa, G. Niedbala, Artificial neural networks in agriculture, Agriculture 11 (6) (2021) 497. [44] M.L. Lin, C.W. Chen, RETRACTED: Stability analysis of community and ecosystem hierarchies using the Lyapunov method, J. Vib. Contr. 17 (13) (2011) 1930-1937. [45] T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Eng. Comput. 17 (2) (2001) 129-150. [46] Y.Q. Chen, B.L. Peng, G.M. Kontogeorgis, X.D. Liang, Machine learning for the prediction of viscosity of ionic liquid-water mixtures, J. Mol. Liq. 350 (2022) 118546. [47] G.R. Yang, X.J. Wang, Artificial neural networks for neuroscientists: A primer, Neuron 107 (6) (2020) 1048-1070. [48] R. Soleimani, A.H. Saeedi Dehaghani, N.A. Shoushtari, P. Yaghoubi, A. Bahadori, Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids, Korean J. Chem. Eng. 35 (7) (2018) 1556-1569. [49] A.S. Zimmermann, S. Mattedi, Feedforward and cascade forward networks for viscosity prediction for binary mixtures of ammonium-based ionic liquids and water, Fluid Phase Equilib. 556 (2022) 113416. [50] T.Q. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting SystemProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. ACM, (2016): 785-794. [51] W. Li, Y.B. Yin, X.W. Quan, H. Zhang, Gene expression value prediction based on XGBoost algorithm, Front. Genet. 10 (2019) 1077. [52] M.A. Akif, K. Roy, N. Abdullah, N. Priota.M.S. Onim, Performance Analysis of Machine Learning Models for Cheating Detection in Online Examinations, 2022 25th International Conference on Computer and Information Technology (ICCIT). IEEE (2022) 342-347. [53] R. Santhanam, N. Uzir, S. Raman.S. Banerjee, Experimenting XGBoost algorithm for prediction and classification of different datasets, IET Contr. Theory Appl. 9(40) (2017) 651-662. [54] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.Y. Liu, LightGBM: A highly efficient gradient boosting decision tree, Adv. Neural Inf. Process. Syst. 30 (2017). [55] Y. Ju, G.Y. Sun, Q.H. Chen, M. Zhang, H.X. Zhu, M.U. Rehman, A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting, IEEE Access 7 (1920) 28309-28318. [56] W.Z. Liang, S.Z. Luo, G.Y. Zhao, H. Wu, Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms, Mathematics 8 (5) (2020) 765. [57] X.J. Ma, J.L. Sha, D.H. Wang, Y.B. Yu, Q. Yang, X.Q. Niu, Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning, Electron. Commer. Res. Appl. 31 (2018) 24-39. |