[1] Y.H. Pi, X.Y. Li, Q.B. Xia, J.L. Wu, Y.W. Li, J. Xiao, Z. Li, Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs), Chem. Eng. J. 337 (2018) 351-371. [2] P.Y. Zhang, T.T. Wang, H.P. Zeng, Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization, Appl. Surf. Sci. 391 (2017) 404-414. [3] M. Pourmadadi, E. Rahmani, M.M. Eshaghi, A. Shamsabadipour, S. Ghotekar, A. Rahdar, L.F. Romanholo Ferreira, Graphitic carbon nitride (g-C3N4) synthesis methods, surface functionalization, and drug delivery applications: A review, J. Drug Deliv. Sci. Technol. 79 (2023) 104001. [4] A.T. Chen, C. Li, C.H. Liu, W.Z. Sun, Direct injection of electrons into Cu active sites from porous phosphorus-doped g-C3N4 for enhanced Fenton-like performance, Appl. Surf. Sci. 628 (2023) 157359. [5] X.Y. Li, M. Wang, R.Y. Wang, M. Shen, P. Wu, Z.Q. Fu, M. Zhu, L.X. Zhang, A distinctive semiconductor-metalloid heterojunction: Unique electronic structure and enhanced CO2 photoreduction activity, J. Colloid Interface Sci. 615 (2022) 821-830. [6] Y. Yuan, R.T. Guo, L.F. Hong, X.Y. Ji, Z.D. Lin, Z.S. Li, W.G. Pan, A review of metal oxide-based Z-scheme heterojunction photocatalysts: Actualities and developments, Mater. Today Energy 21 (2021) 100829. [7] A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science 372 (6547) (2021) eabf1581. [8] A.S. Ma, H.L. Qian, H.X. Liu, S.L. Ren, Degradation of malachite green by g-C3N4-modified magnetic attapulgite composites under visible-light conditions, Environ. Sci. Pollut. Res. Int. 30 (42) (2023) 96360-96375. [9] M.M. Hu, H. Zhang, T. Hu, B.B. Fan, X.H. Wang, Z.J. Li, Emerging 2D MXenes for supercapacitors: Status, challenges and prospects, Chem. Soc. Rev. 49 (18) (2020) 6666-6693. [10] Y. Yang, Z.T. Zeng, G.M. Zeng, D.L. Huang, R. Xiao, C. Zhang, C.Y. Zhou, W.P. Xiong, W.J. Wang, M. Cheng, W.J. Xue, H. Guo, X. Tang, D.H. He, Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production, Appl. Catal. B Environ. 258 (2019) 117956. [11] B.H. Sun, Q.Q. Li, M.H. Zheng, G.J. Su, S.J. Lin, M.G. Wu, C.Q. Li, Q.L. Wang, Y.M. Tao, L.W. Dai, Y. Qin, B.W. Meng, Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials: A review, Environ. Pollut. 265 (Pt A) (2020) 114908. [12] V.H. Nguyen, S.M. Smith, K. Wantala, P. Kajitvichyanukul, Photocatalytic remediation of persistent organic pollutants (POPs): A review, Arab. J. Chem. 13 (2020) 8309-8337. [13] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 116 (12) (2016) 7159-7329. [14] X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131 (5) (2009) 1680-1681. [15] Z. Mohammadi, H. Abbasi-Asl, M.M. Sabzehmeidani, M. Ghaedi, Z. Moradi, Interface engineering of a magnetic 2D-C3N4/Fe2O3/NiFe-LDH heterostructure for efficient photocatalytic degradation of methylene blue and rhodamine B dyes under visible light, Appl. Clay Sci. 246 (2023) 107182. [16] B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller, W. Schnick, Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies, J. Am. Chem. Soc. 125 (34) (2003) 10288-10300. [17] Y.H. Li, Y.J. Sun, F. Dong, W.K. Ho, Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene, J. Colloid Interface Sci. 436 (2014) 29-36. [18] S.Y. Shen, T. Ke, D.K. Fang, D.H. Lin, N and S co-doping of TiO2@C derived from in situ oxidation of Ti3C2 MXene for efficient persulfate activation and sulfamethoxazole degradation under visible light, Sep. Purif. Technol. 297 (2022) 121460. [19] J.X. Yang, W.B. Yu, C.F. Li, W.D. Dong, L.Q. Jiang, N. Zhou, Z.P. Zhuang, J. Liu, Z.Y. Hu, H. Zhao, Y. Li, L.H. Chen, J.G. Hu, B.L. Su, PtO nanodots promoting Ti3C2 MXene in situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production, Chem. Eng. J. 420 (2021) 129695. [20] H.S. Huang, Y. Song, N.J. Li, D.Y. Chen, Q.F. Xu, H. Li, J.H. He, J.M. Lu, One-step in situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation, Appl. Catal. B Environ. 251 (2019) 154-161. [21] X.D. Zhao, Q. Liu, X.L. Li, H.M. Ji, Z.R. Shen, Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes, Chin. Chem. Lett. 34 (11) (2023) 108306. [22] D. Liu, S. Zhang, J.M. Wang, T.Y. Peng, R.J. Li, Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3 nanosheets for efficient visible-light-driven H2 generation, ACS Appl. Mater. Interfaces 11 (31) (2019) 27913-27923. [23] H. Abbasi_Asl, M.M. Sabzehmeidani, M. Ghaedi, Z. Moradi, Bifunctional quaternary magnetic composite as efficient heterojunctions photocatalyst for simultaneous photocatalytic visible light degradation of dye and herbicide pollutants from water and bacterial disinfection, J. Environ. Manag. 345 (2023) 118656. [24] N. Tian, Y.H. Zhang, X.W. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T.R. Zhang, H.W. Huang, Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution, Nano Energy 38 (2017) 72-81. [25] Z.B. Wu, Y.S. Liang, X.Z. Yuan, D.S. Zou, J. Fang, L.B. Jiang, J. zhang, H.L. Yang, Z.H. Xiao, MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants, Chem. Eng. J. 394 (2020) 124921. [26] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2, Adv. Mater. 23 (37) (2011) 4248-4253. [27] L.B. Jiang, X.Z. Yuan, G.M. Zeng, X.H. Chen, Z.B. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, Phosphorus- and sulfur-codoped g-C3N4: Facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation, ACS Sustainable Chem. Eng. 5 (7) (2017) 5831-5841. [28] W.J. Li, R.S. Li, D. Wang, G.D. Li, W.C. Pan, S.B. Wang, W.H. Sun, J.H. Wu, Z. Lan, High-efficiency perovskite solar cells treated by rutile TiO2 nanoparticles (4 nm) from Ti3C2 MXene oxidation, ACS Appl. Energy Mater. 5 (10) (2022) 12388-12395. [29] N. Liu, N. Lu, H.T. Yu, S. Chen, X. Quan, Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants, Chemosphere 246 (2020) 125760. [30] Y. Yoon, M.H. Lee, S.K. Kim, G. Bae, W. Song, S. Myung, J. Lim, S.S. Lee, T. Zyung, K.S. An, A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes, Adv. Energy Mater. 8 (15) (2018) 1703173. [31] W.K. Jo, T.S. Natarajan, Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation, Chem. Eng. J. 281 (2015) 549-565. [32] W.Y. Yuan, L.F. Cheng, Y.N. Zhang, H. Wu, S.L. Lv, L.Y. Chai, X.H. Guo, L.X. Zheng, Hydrogen evolution: 2D-layered carbon/TiO2 hybrids derived from Ti3C2MXenes for photocatalytic hydrogen evolution under visible light irradiation (adv. mater. interfaces 20/2017), Adv. Mater. Interfaces 4 (20) (2017) 1770103. [33] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (41) (2008) 4893-4908. [34] P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies, Adv. Mater. 26 (47) (2014) 8046-8052. [35] L. Shen, W.J. Zhao, K. Wang, J.G. Xu, GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings, J. Hazard. Mater. 417 (2021) 126048. [36] N. Yin, H.Y. Chen, X.Z. Yuan, Y. Zhang, M.J. Zhang, J.Y. Guo, Y.Y. Zhang, L. Qiao, M.S. Liu, K.X. Song, Highly efficient photocatalytic degradation of norfloxacin via Bi2Sn2O7/PDIH Z-scheme heterojunction: Influence and mechanism, J. Hazard. Mater. 436 (2022) 129317. [37] P.X. Liu, L.B. Xing, H.T. Lin, H.N. Wang, Z.Y. Zhou, Z.M. Su, Construction of porous covalent organic polymer as photocatalysts for RhB degradation under visible light, Sci. Bull. 62 (13) (2017) 931-937. [38] C. Xu, H. Wu, F.L. Gu, Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites, J. Hazard. Mater. 275 (2014) 185-192. [39] J. Lim, H. Kim, P.J.J. Alvarez, J. Lee, W. Choi, Visible light sensitized production of hydroxyl radicals using fullerol as an electron-transfer mediator, Environ. Sci. Technol. 50 (19) (2016) 10545-10553. [40] R.D. Tang, D.X. Gong, Y.C. Deng, S. Xiong, J. Deng, L. Li, Z.P. Zhou, J.F. Zheng, L. Su, L.H. Yang, π-π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation, Chem. Eng. J. 427 (2022) 131809. [41] R.D. Tang, D.X. Gong, Y.C. Deng, S. Xiong, J.F. Zheng, L. Li, Z.P. Zhou, L. Su, J. Zhao, π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation, J. Hazard. Mater. 423 (Pt A) (2022) 126944. [42] L. Biswal, S. Nayak, K. Parida, Rationally designed Ti3C2/N, S-TiO2/g-C3N4 ternary heterostructure with spatial charge separation for enhanced photocatalytic hydrogen evolution, J. Colloid Interface Sci. 621 (2022) 254-266. [43] D.X. Jin, Y.H. Lv, D.Y. He, D.M. Zhang, Y. Liu, T.T. Zhang, F.Y. Cheng, Y.N. Zhang, J.Q. Sun, J. Qu, Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst, Chemosphere 308 (Pt 3) (2022) 136461. [44] A. Kumar, M. Khan, J.H. He, I.M.C. Lo, Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review, Water Res. 170 (2020) 115356. [45] Y. Cao, Z.P. Xing, Z.Z. Li, X.Y. Wu, M.Q. Hu, X. Yan, Q. Zhu, S.L. Yang, W. Zhou, Mesoporous black TiO2-x/Ag nanospheres coupled with g-C3N4 nanosheets as 3D/2D ternary heterojunctions visible light photocatalysts, J. Hazard. Mater. 343 (2018) 181-190. [46] W. Xiong, X.Y. Li, Q.D. Zhao, Y. Shi, C. Hao, Insight into the photocatalytic mineralization of short chain chlorinated paraffins boosted by polydopamine and Ag nanoparticles, J. Hazard. Mater. 359 (2018) 186-193. [47] J.W. Zhang, Z.S. Jin, C.X. Feng, L.G. Yu, J.W. Zhang, Z.J. Zhang, ESR study on the visible photocatalytic mechanism of nitrogen-doped novel TiO2 Synergistic effect of two kinds of oxygen vacancies, J. Solid State Chem. 184 (11) (2011) 3066-3073. [48] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960. [49] Y.C. Deng, C.Y. Feng, L. Tang, Y.Y. Zhou, Z.M. Chen, H.P. Feng, J.J. Wang, J.F. Yu, Y.N. Liu, Ultrathin low dimensional heterostructure composites with superior photocatalytic activity: Insight into the multichannel charge transfer mechanism, Chem. Eng. J. 393 (2020) 124718. [50] X.D. Zhang, D. Kim, J. Yan, L.Y.S. Lee, Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4, ACS Appl. Mater. Interfaces 13 (8) (2021) 9762-9770. [51] M. Volokh, G.M. Peng, J. Barrio, M. Shalom, Carbon nitride materials for water splitting photoelectrochemical cells, Angew. Chem. Int. Ed Engl. 58 (19) (2019) 6138-6151. [52] H.J. Zhai, L.S. Wang, Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2) n- (n = 1-10) using photoelectron spectroscopy, J. Am. Chem. Soc. 129 (10) (2007) 3022-3026. [53] D. Salazar-Marin, G. Oza, J.A.D. Real, A. Cervantes-Uribe, H. Perez-Vidal, M.K. Kesarla, J.G.T. Torres, S. Godavarthi, Distinguishing between type II and S-scheme heterojunction materials: A comprehensive review, Appl. Surf. Sci. Adv. 19 (2024) 100536. [54] M. Hou, L. Cui, F. Su, X. Dong, H. Dang, Two-step calcination synthesis of Z-scheme α-Fe2O3/few-layer g-C3N4 composite with enhanced hydrogen production and photodegradation under visible light, J. Chin. Chem. Soc. 67 (2020) 2050-2061. [55] H.F. Dang, Q. Li, M.Y. Li, Y.L. Han, M.M. Shao, Q.B. Liu, Construction of P-N charge-transfer bridge in porous g-C3N4 for highly efficient visible-light-driven photocatalytic N2 fixation, Appl. Surf. Sci. 653 (2024) 159307. [56] H.F. Dang, S.H. Mao, Q. Li, M.Y. Li, M.M. Shao, W.L. Wang, Q.B. Liu, Synergy of nitrogen vacancies and partially broken hydrogen bonds in graphitic carbon nitride for superior photocatalytic hydrogen evolution under visible light, Catal. Sci. Technol. 12 (16) (2022) 5032-5044. |