[1] B. Sun, Z. Zhang, D. Yang, Improved heat transfer and flow resistance achieved with drag reducing Cu nanofluids in the horizontal tube and built-in twisted belt tubes, Int. J. Heat Mass Transf. 95(2016) 69-82. [2] M. Stewart, 9-Piping system design:Layout, supports, and piping vessels and equipment, Surf. Prod. Operations 3(2016) 639-730. [3] W. Zhang, A. Li, Resistance reduction via guide vane in dividing manifold systems with parallel pipe arrays (DMS-PPA) based on analysis of energy dissipation, Build. Environ. 139(2018) 189-198. [4] C.H. Hong, H.J. Choi, K. Zhang, F. Renou, M. Grisel, Effect of salt on turbulent drag reduction of xanthan gum, Carbohydr. Polym. 121(2015) 342-347. [5] L. Tang, Z. Zeng, G. Wang, E. Liu, L. Li, Q. Xue, Investigation on superhydrophilic surface with porous structure:Drag reduction or drag increasing, Surf. Coat. Technol. 317(Supplement C) (2017) 54-63. [6] K. Fukagata, N. Kasagi, Drag reduction in turbulent pipe flow with feedback control applied partially to wall, Int. J. Heat Fluid Flow 24(4) (2003) 480-490. [7] L. Thais, T.B. Gatski, G. Mompean, Analysis of polymer drag reduction mechanisms from energy budgets, Int. J. Heat Fluid Flow 43(2013) 52-61. [8] L. Zhu, H. Schrobsdorff, T.M. Schneider, L. Xi, Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids, J. Non-Newtonian Fluid 262(2018) 115-130. [9] S.J. Wu, K. Ouyang, S.W. Shiah, Robust design of microbubble drag reduction in a channel flow using the Taguchi method, Ocean Eng. 35(8) (2008) 856-863. [10] T. Kim, R. Shin, M. Jung, J. Lee, C. Park, S. Kang, Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies:Nanostructures on micro-riblets, Appl. Surf. Sci. 367(2016) 147-152. [11] A. Patzold, I. Peltzer, W. Nitsche, N. Goldin, R. King, D. Haller, P. Woias, Active compliant wall for skin friction reduction, Int. J. Heat Fluid Flow 44(2013) 87-94. [12] M.W. Ge, L. Fang, Y.Q. Liu, Drag reduction of wall bounded incompressible turbulent flow based on active dimples/pimples, J. Hydrodyn. Ser. B 29(2) (2017) 261-271. [13] Y.L. Yan, M.Y. Cui, W.D. Jiang, A.L. He, C. Liang, Drag reduction in reservoir rock surface:Hydrophobic modification by SiO2 nanofluids, Appl. Surf. Sci. 396(2017) 1556-1561. [14] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes, Chin. J. Chem. Eng. 23(3) (2015) 471-475. [15] J. Hewitt, N.J. Balmforth, Viscoplastic lubrication theory with application to bearings and the washboard instability of a planing plate, J. Non-Newton. Fluid 169-170(2012) 74-90. [16] Z. Zhu, R. Nathan, Q. Wu, An experimental study of the lubrication theory for highly compressible porous media, with and without lateral leakage, Tribology Int. 127(2018) 324-332. [17] E. Taghvaei, A. Moosavi, A. Nouri-Borujerdi, M.A. Daeian, S. Vafaeinejad, Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction, Energy 125(2017) 1-10. [18] B. Farshchian, J. Pierce, M.S. Beheshti, S. Park, N. Kim, Droplet impinging behavior on surfaces with wettability contrasts, Microelectron. Eng. 195(2018) 50-56. [19] V. Mortazavi, M.M. Khonsari, On the degradation of superhydrophobic surfaces:A review, Wear 372-373(2017) 145-157. [20] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Superhydrophilic (superwetting) surfaces:a review on fabrication and application, J. Ind. Eng. Chem. 47(2017) 19-40. [21] C. Huang, D. Liu, J. Wei, Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels, Chem. Eng. Sci. 152(2016) 267-279. [22] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid, J. Ind. Eng. Chem. 20(2) (2014) 633-637. [23] A. Al-Sarkhi, Effect of mixing on frictional loss reduction by drag reducing polymer in annular horizontal two-phase flows, Int. J. Multiphase Flow 39(2012) 186-192. [24] M. Drzazga, A. Gierczycki, G. Dzido, M. Lemanowicz, Influence of nonionic surfactant addition on drag reduction of water based nanofluid in a small diameter pipe, Chin. J. Chem. Eng. 21(1) (2013) 104-108. [25] J. Yu, S.K. Jung, M. Choi, Drag reduction induced by kinematic viscosity of nanofluids containing carbon nanotubes in a horizontal tube, Part. Aerosol Res. 9(2013) 271-277. [26] A. Steele, I.S. Bayer, E. Loth, Pipe flow drag reduction effects from carbon nanotube additives, Carbon 77(2014) 1183-1186. [27] M. Gudala, S. Banerjee, A. Kumar, T. R. M. Rao, A. Mandal, T.K. Naiya, Rheological modeling and drag reduction studies of Indian heavy crude oil in presence of novel surfactant, Pet. Sci. Technol. 35(2017) 2287-2295. [28] M. Gudala, S. Banerjee, R. Kumar, T. R. M. Rao, A. Mandal, T.K. Naiya, Experimental investigation on hydrodynamics of two-phase crude oil flow in horizontal pipe with novel surfactant, J. Fluids Eng. 140(6) (2018) 1-14. [29] M. Gudala, S. Banerjee, T. R. M. Rao, A. Mandal, T.K. Naiya, A. Mandel, Studies on the effect of bio additive on viscosity and energy requirement for heavy oil flow, Pet. Sci. Technol. 36(2018) 99-107. [30] K.S. Sokhal, D. Gangacharyulu, V.K. Bulasara, An experimental investigation of heterogeneous injection of biopolymer (guar gum) on the flow patterns and drag reduction percentage for two phase (water-oil-mixture) flow, Exp. Thermal Fluid Sci. 102(2019) 342-350. [31] D. Banerjee, Nanofluids and applications to energy systems, in encyclopedia of sustainable technologies, Encyclopedia of Sustainable Technologies 4(2017) 429-439. [32] J.M. Munyalo, X. Zhang, Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials:A review, J. Mol. Liq. 265(2018) 77-87. [33] Y. Tuo, W. Chen, H. Zhang, P. Li, X. Liu, One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil, Appl. Surf. Sci. 446(2018) 230-235. [34] K. Moaven, M. Rad, M. Taeibi-Rahni, Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows, Exp. Thermal Fluid Sci. 51(2013) 239-243. [35] V. Klang, C. Valenta, Lecithin-based nanoemulsions, J. Drug Deliv. Sci. Tec. 21(1) (2011) 55-76. [36] P. Tipsawat, U. Wongpratat, S. Phumying, N. Chanlek, K. Chokprasombat, S. Maensiri, Magnetite (Fe3O4) nanoparticles:Synthesis, characterization and electrochemical properties, Appl. Surf. Sci. 446(2018) 287-292. [37] O. Jongprateep, R. Puranasamriddhi, Effects of reagents on the formation of nanoparticulate titanium dioxide synthesized by sol-gel technique, Materials Today:Proc. 5(5, Part 1) (2018) 10925-10931. [38] L. Ciccotti, L. Vale, T. Hewer, R. Freire, Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes, Catal. Sci. Technol. 5(2015) 1143-1152. [39] Y.G. Abou El-Reash, Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water, J. Environ. Chem. Eng. 4(4) (2016) 3835-3847. [40] N.D. Katopodes, Chapter 9-Boundary-layer flow, in free-surface flow, ButterworthHeinemann (2019) 652-708. [41] S.S. Stylianou, R. Pecnik, S.C. Kassinos, Analyzing a turbulent pipe flow via the onepoint structure tensors:Vorticity crawlers and streak shadows, Comput. Fluids 140(2016) 450-477. [42] D. Liu, Q. Wang, J. Wei, Experimental study on drag reduction performance of mixed polymer and surfactant solutions, Chem. Eng. Res. Des. 132(2018) 460-469. [43] M. Tian, B. Fang, L. Jin, Y. Lu, X. Qiu, H. Jin, K. Li, Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions, Chin. J. Chem. Eng. 23(9) (2015) 1440-1446. [44] M. Dejam, Dispersion in non-Newtonian fluid flows in a conduit with porous walls, Chem. Eng. Sci. 189(2018) 296-310. [45] D. Marsh, Thermodynamics of phospholipid self-assembly, Biophys. J. 102(5) (2012) 1079-1087. [46] T. Zhang, X. Cao, X. Wang, C. Song, Synthesis, surface activity and thermodynamic properties of cationic gemini surfactants with diester and rigid spacers, J. Mol. Liq. 230(2017) 505-510. [47] G.H. Lim, H.J. Choi, F. Renou, A.N. Roy, Effects of hydrophobic modification of xanthan gum on its turbulent drag reduction characteristics, J. Ind. Eng. Chem. 54(2017) 146-150. [48] W. Gong, Q.F. Di, X.L. Wang, S. Hua, R.I. Zhang, F. Ye, Seepage model and experiments of drag reduction by nanoparticle adsorption, J. Hydrodynamics, Ser. B 25(6) (2013) 871-876. [49] K.S. Sokhal, G. Dasaroju, V.K. Bulasara, Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow, Vacuum 159(2019) 247-253. [50] K. Watanabe, Chapter 5-Drag reduction in a homogeneous flow, Drag Reduction of Complex Mixtures, Academic Press, USA 2018, pp. 123-204. [51] H. Shi, W. Ge, Y. Wang, B. Fang, J.T. Hugginsa, T.A. Russell, Y. Talmond, D.J. Harte, J.L. Zakina, A drag reducing surfactant threadlike micelle system with unusual rheological responses to pH, J. Colloid Interface Sci. 418(2014) 95-102. |