[1] W. Chen, J. Hong, C. Xu, Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement, J. Clean. Prod. 103(2015) 61-69. [2] P.V.L. Reddy, K.H. Kim, A review of photochemical approaches for the treatment of a wide range of pesticides, J. Hazard. Mater. 285(2015) 325-335. [3] A.T. Nguyen, R.S. Juang, Photocatalytic degradation of p-chlorophenol by hibrid H2O2 and TiO2 in aqueous suspensions under UV irradiation, J. Environ. Manag. 147(2015) 271-277. [4] W.K. Jo, R.J. Tayade, Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes, Chin. J. Catal. 35(11) (2014) 1781-1792. [5] E. Brillas, C.A. Martinez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electronchemical methods. An updated review, Appl. Catal., B 166-167(2015) 603-643. [6] P. Sierra-Rosales, C. Berrios, S. Miranda-Rojas, J.A. Squella, Experimental and theoretical insights into the electrooxidation pathway of azo-colorants on glassy carbon electrode, Electrochim. Acta 290(2018) 556-567. [7] J. Li, J.L. Gong, G.M. Zeng, P. Zhang, B. Song, W.C. Cao, H.Y. Liu, S.Y. Huan, Zirconiumbased metal organic frameworks loaded on polyurethane foam membrane for simultaneous removal of dyes with different charges, J. Colloid Interface Sci. 527(2018) 267-279. [8] Z. Shu, H. Wu, H. Lin, T. Li, Y. Liu, F. Ye, X. Mu, X. Li, X. Jiang, J. Huang, Decolorization of Remazol Brilliant Blue R using a novel acyltransferase-ISCO (in situ chemical oxidation) coupled system, Biochem. Eng. J. 115(2016) 56-63. [9] K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S. Gan, Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals:review on ice-templating method and adsorption mechanisms, J. Environ. Sci. 79(2019) 174-199. [10] C. Puri, G. Sumana, Highly effective adsorption of crystal violet dye from contaminated water using graphene oxide intercalated montmorillonite nanocomposite, Appl. Clay Sci. 166(2018) 102-112. [11] N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment:a review, Water Res. 144(2018) 145-161. [12] L.W. Wang, Z. Tamainot-Telto, R. Thorpe, R.E. Critoph, S.J. Metcalf, R.Z. Wang, Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration, Renew. Energy 36(2011) 2062-2066. [13] H. Gong, Z. Chen, Y. Fan, M. Zhang, W. Wu, W. Wang, Surface modification of activated carbon for siloxane adsorption, Renew. Energy 83(2015) 144-150. [14] M.C. Ncibi, V. Jeanne-Rose, B. Mahjoub, C. Jean-Marius, J. Lambert, J.J. Ehrhardt, Y. Bercion, M. Seffen, S. Gaspard, Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres, J. Hazard. Mater. 165(1-3) (2009) 240-249. [15] K. Murakami, Y. Yamaguchi, K. Noda, T. Fujii, N. Shinohara, T. Ushirokawa, Y. Sugawa-Katayama, M. Katayama, Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner) C. Agardh, J. Food Compos. Anal. 24(2) (2011) 231-236. [16] T.A. Pozdniakova, L.P. Mazur, R.A.R. Boaventura, V.J.P. Vilar, Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process, J. Clean. Prod. 119(2016) 38-49. [17] X. Chen, W. Nie, G. Yu, Y. Li, Y. Hu, J. Lu, L. Jin, Antitumor and immunomodulatory activity of polysaccharides from Sargassum fusiforme, Food Chem. Toxicol. 50(3-4) (2012) 695-700. [18] V.F. Taylor, B.P. Jackson, Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture, Chemos. 163(2016) 6-13. [19] W. Shen, J. Zheng, Z. Qin, J. Wang, Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide, J. Colloid Interface Sci. 264(2) (2003) 467-473. [20] W. Shen, J. Zheng, Z. Qin, J. Wang, Y. Liu, The effect of temperature on the mesopore development in commercial activated carbon by steam activation in the presence of yttrium and cerium oxides, Colloids Surf. A Physicochem. Eng. Asp. 229(1) (2003) 55-61. [21] S. Kang, J. Jian-chun, C. Dan-dan, Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification, Biomass Bioenergy 35(8) (2011) 3643-3647. [22] J. Yang, K. Qiu, Development of high surface area mesoporous activated carbons from herb residues, Chem. Eng. J. 167(1) (2011) 148-154. [23] L. Lin, S. Zhai, Z. Xiao, Y. Song, Q. An, X. Song, Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks, Bior.Technol. 136(2013) 437-443. [24] C. Yan, C. Wang, J. Yao, L. Zhang, X. Liu, Adsorption of methylene blue on mesoporous carbons prepared using acid- and alkaline-treated zeolite X as the template, Colloids Surf. A Physicochem. Eng. Asp. 333(1-3) (2009) 115-119. [25] K.M. Nelson, S.M. Mahurin, R.T. Mayes, B. Williamson, C.M. Teague, A.J. Binder, L. Baggetto, G.M. Veith, S. Dai, Preparation and CO2 adsorption properties of softtemplated mesoporous carbons derived from chestnut tannin precursors, Microporous Mesoporous Mater. 222(2016) 94-103. [26] N. Passe-Cautrin, S. Altenor, S. Gaspard, Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories, J. Colloid Interface Sci. 332(2) (2009) 515-519. [27] J.P. Olivier, Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data, Carbon. 36(10) (1998) 1469-1472. [28] Z. Ryu, J. Zheng, M. Wang, B. Zhang, Characterization of pore size distributions on carbonaceous adsorbent by DFT, Carbon. 37(8) (1999) 1257-1264. [29] Y.S. Ho, G. Mckay, Sorption of dyes from aqueous solution by peat, Chem. Eng. J. 70(2) (1998) 115-124. [30] M.K. Purkait, A. Maiti, S. DasGupta, S. De, Removal of congo red using activated carbon and its regeneration, J. Hazard. Mater. 145(1-2) (2007) 287-295. [31] J. Li, D.H.L. Ng, P. Song, C. Kong, Y. Song, P. Yang, Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption, Biomass Bioenergy 75(2015) 189-200. [32] M. Ghaedi, H. Tavallali, M. Sharifi, S.N. Kokhdan, A. Asghari, Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of congo red from aqueous solution, Spectrochim. Acta A Mol. Biomol. Spectrosc. 86(2012) 107-114. [33] S. Mohebali, D. Bastani, H. Shayesteh, Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye:acid and CTABacid modified celery (Apium graveolens), J. Mol. Struct. 1176(2019) 181-193. [34] J. Zhang, X. Yan, M. Hu, X. Hu, M. Zhou, Adsorption of Congo red from aqueous solution using ZnO-modified SiO2 nanospheres with rough surfaces, J. Mol. Liq. 249(2018) 772-778. [35] N.T.T. Tu, T.V. Thien, P.D. Du, V.T.T. Chau, T.X. Mau, D.Q. Khieu, Adsorptive removal of congo red from aqueous solution using zeolitic imidazolate framework-67, J. Environ. Chem. Eng. 6(2) (2018) 2269-2280. |