Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (1): 63-75.DOI: 10.1016/j.cjche.2019.04.015
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Nadia Esfandiari, Reza Zareinezhad, Zahra Habibi
Received:
2019-01-03
Revised:
2019-03-22
Online:
2020-03-31
Published:
2020-01-28
Contact:
Nadia Esfandiari
Nadia Esfandiari, Reza Zareinezhad, Zahra Habibi
通讯作者:
Nadia Esfandiari
Nadia Esfandiari, Reza Zareinezhad, Zahra Habibi. The investigation and optimization of drag reduction in turbulent flow of Newtonian fluid passing through horizontal pipelines using functionalized magnetic nanophotocatalysts and lecithin[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 63-75.
Nadia Esfandiari, Reza Zareinezhad, Zahra Habibi. The investigation and optimization of drag reduction in turbulent flow of Newtonian fluid passing through horizontal pipelines using functionalized magnetic nanophotocatalysts and lecithin[J]. 中国化学工程学报, 2020, 28(1): 63-75.
[1] B. Sun, Z. Zhang, D. Yang, Improved heat transfer and flow resistance achieved with drag reducing Cu nanofluids in the horizontal tube and built-in twisted belt tubes, Int. J. Heat Mass Transf. 95(2016) 69-82. [2] M. Stewart, 9-Piping system design:Layout, supports, and piping vessels and equipment, Surf. Prod. Operations 3(2016) 639-730. [3] W. Zhang, A. Li, Resistance reduction via guide vane in dividing manifold systems with parallel pipe arrays (DMS-PPA) based on analysis of energy dissipation, Build. Environ. 139(2018) 189-198. [4] C.H. Hong, H.J. Choi, K. Zhang, F. Renou, M. Grisel, Effect of salt on turbulent drag reduction of xanthan gum, Carbohydr. Polym. 121(2015) 342-347. [5] L. Tang, Z. Zeng, G. Wang, E. Liu, L. Li, Q. Xue, Investigation on superhydrophilic surface with porous structure:Drag reduction or drag increasing, Surf. Coat. Technol. 317(Supplement C) (2017) 54-63. [6] K. Fukagata, N. Kasagi, Drag reduction in turbulent pipe flow with feedback control applied partially to wall, Int. J. Heat Fluid Flow 24(4) (2003) 480-490. [7] L. Thais, T.B. Gatski, G. Mompean, Analysis of polymer drag reduction mechanisms from energy budgets, Int. J. Heat Fluid Flow 43(2013) 52-61. [8] L. Zhu, H. Schrobsdorff, T.M. Schneider, L. Xi, Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids, J. Non-Newtonian Fluid 262(2018) 115-130. [9] S.J. Wu, K. Ouyang, S.W. Shiah, Robust design of microbubble drag reduction in a channel flow using the Taguchi method, Ocean Eng. 35(8) (2008) 856-863. [10] T. Kim, R. Shin, M. Jung, J. Lee, C. Park, S. Kang, Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies:Nanostructures on micro-riblets, Appl. Surf. Sci. 367(2016) 147-152. [11] A. Patzold, I. Peltzer, W. Nitsche, N. Goldin, R. King, D. Haller, P. Woias, Active compliant wall for skin friction reduction, Int. J. Heat Fluid Flow 44(2013) 87-94. [12] M.W. Ge, L. Fang, Y.Q. Liu, Drag reduction of wall bounded incompressible turbulent flow based on active dimples/pimples, J. Hydrodyn. Ser. B 29(2) (2017) 261-271. [13] Y.L. Yan, M.Y. Cui, W.D. Jiang, A.L. He, C. Liang, Drag reduction in reservoir rock surface:Hydrophobic modification by SiO2 nanofluids, Appl. Surf. Sci. 396(2017) 1556-1561. [14] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes, Chin. J. Chem. Eng. 23(3) (2015) 471-475. [15] J. Hewitt, N.J. Balmforth, Viscoplastic lubrication theory with application to bearings and the washboard instability of a planing plate, J. Non-Newton. Fluid 169-170(2012) 74-90. [16] Z. Zhu, R. Nathan, Q. Wu, An experimental study of the lubrication theory for highly compressible porous media, with and without lateral leakage, Tribology Int. 127(2018) 324-332. [17] E. Taghvaei, A. Moosavi, A. Nouri-Borujerdi, M.A. Daeian, S. Vafaeinejad, Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction, Energy 125(2017) 1-10. [18] B. Farshchian, J. Pierce, M.S. Beheshti, S. Park, N. Kim, Droplet impinging behavior on surfaces with wettability contrasts, Microelectron. Eng. 195(2018) 50-56. [19] V. Mortazavi, M.M. Khonsari, On the degradation of superhydrophobic surfaces:A review, Wear 372-373(2017) 145-157. [20] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Superhydrophilic (superwetting) surfaces:a review on fabrication and application, J. Ind. Eng. Chem. 47(2017) 19-40. [21] C. Huang, D. Liu, J. Wei, Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels, Chem. Eng. Sci. 152(2016) 267-279. [22] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid, J. Ind. Eng. Chem. 20(2) (2014) 633-637. [23] A. Al-Sarkhi, Effect of mixing on frictional loss reduction by drag reducing polymer in annular horizontal two-phase flows, Int. J. Multiphase Flow 39(2012) 186-192. [24] M. Drzazga, A. Gierczycki, G. Dzido, M. Lemanowicz, Influence of nonionic surfactant addition on drag reduction of water based nanofluid in a small diameter pipe, Chin. J. Chem. Eng. 21(1) (2013) 104-108. [25] J. Yu, S.K. Jung, M. Choi, Drag reduction induced by kinematic viscosity of nanofluids containing carbon nanotubes in a horizontal tube, Part. Aerosol Res. 9(2013) 271-277. [26] A. Steele, I.S. Bayer, E. Loth, Pipe flow drag reduction effects from carbon nanotube additives, Carbon 77(2014) 1183-1186. [27] M. Gudala, S. Banerjee, A. Kumar, T. R. M. Rao, A. Mandal, T.K. Naiya, Rheological modeling and drag reduction studies of Indian heavy crude oil in presence of novel surfactant, Pet. Sci. Technol. 35(2017) 2287-2295. [28] M. Gudala, S. Banerjee, R. Kumar, T. R. M. Rao, A. Mandal, T.K. Naiya, Experimental investigation on hydrodynamics of two-phase crude oil flow in horizontal pipe with novel surfactant, J. Fluids Eng. 140(6) (2018) 1-14. [29] M. Gudala, S. Banerjee, T. R. M. Rao, A. Mandal, T.K. Naiya, A. Mandel, Studies on the effect of bio additive on viscosity and energy requirement for heavy oil flow, Pet. Sci. Technol. 36(2018) 99-107. [30] K.S. Sokhal, D. Gangacharyulu, V.K. Bulasara, An experimental investigation of heterogeneous injection of biopolymer (guar gum) on the flow patterns and drag reduction percentage for two phase (water-oil-mixture) flow, Exp. Thermal Fluid Sci. 102(2019) 342-350. [31] D. Banerjee, Nanofluids and applications to energy systems, in encyclopedia of sustainable technologies, Encyclopedia of Sustainable Technologies 4(2017) 429-439. [32] J.M. Munyalo, X. Zhang, Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials:A review, J. Mol. Liq. 265(2018) 77-87. [33] Y. Tuo, W. Chen, H. Zhang, P. Li, X. Liu, One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil, Appl. Surf. Sci. 446(2018) 230-235. [34] K. Moaven, M. Rad, M. Taeibi-Rahni, Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows, Exp. Thermal Fluid Sci. 51(2013) 239-243. [35] V. Klang, C. Valenta, Lecithin-based nanoemulsions, J. Drug Deliv. Sci. Tec. 21(1) (2011) 55-76. [36] P. Tipsawat, U. Wongpratat, S. Phumying, N. Chanlek, K. Chokprasombat, S. Maensiri, Magnetite (Fe3O4) nanoparticles:Synthesis, characterization and electrochemical properties, Appl. Surf. Sci. 446(2018) 287-292. [37] O. Jongprateep, R. Puranasamriddhi, Effects of reagents on the formation of nanoparticulate titanium dioxide synthesized by sol-gel technique, Materials Today:Proc. 5(5, Part 1) (2018) 10925-10931. [38] L. Ciccotti, L. Vale, T. Hewer, R. Freire, Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes, Catal. Sci. Technol. 5(2015) 1143-1152. [39] Y.G. Abou El-Reash, Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water, J. Environ. Chem. Eng. 4(4) (2016) 3835-3847. [40] N.D. Katopodes, Chapter 9-Boundary-layer flow, in free-surface flow, ButterworthHeinemann (2019) 652-708. [41] S.S. Stylianou, R. Pecnik, S.C. Kassinos, Analyzing a turbulent pipe flow via the onepoint structure tensors:Vorticity crawlers and streak shadows, Comput. Fluids 140(2016) 450-477. [42] D. Liu, Q. Wang, J. Wei, Experimental study on drag reduction performance of mixed polymer and surfactant solutions, Chem. Eng. Res. Des. 132(2018) 460-469. [43] M. Tian, B. Fang, L. Jin, Y. Lu, X. Qiu, H. Jin, K. Li, Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions, Chin. J. Chem. Eng. 23(9) (2015) 1440-1446. [44] M. Dejam, Dispersion in non-Newtonian fluid flows in a conduit with porous walls, Chem. Eng. Sci. 189(2018) 296-310. [45] D. Marsh, Thermodynamics of phospholipid self-assembly, Biophys. J. 102(5) (2012) 1079-1087. [46] T. Zhang, X. Cao, X. Wang, C. Song, Synthesis, surface activity and thermodynamic properties of cationic gemini surfactants with diester and rigid spacers, J. Mol. Liq. 230(2017) 505-510. [47] G.H. Lim, H.J. Choi, F. Renou, A.N. Roy, Effects of hydrophobic modification of xanthan gum on its turbulent drag reduction characteristics, J. Ind. Eng. Chem. 54(2017) 146-150. [48] W. Gong, Q.F. Di, X.L. Wang, S. Hua, R.I. Zhang, F. Ye, Seepage model and experiments of drag reduction by nanoparticle adsorption, J. Hydrodynamics, Ser. B 25(6) (2013) 871-876. [49] K.S. Sokhal, G. Dasaroju, V.K. Bulasara, Formation, stability and comparison of water/oil emulsion using gum arabic and guar gum and effect of aging of polymers on drag reduction percentage in water/oil flow, Vacuum 159(2019) 247-253. [50] K. Watanabe, Chapter 5-Drag reduction in a homogeneous flow, Drag Reduction of Complex Mixtures, Academic Press, USA 2018, pp. 123-204. [51] H. Shi, W. Ge, Y. Wang, B. Fang, J.T. Hugginsa, T.A. Russell, Y. Talmond, D.J. Harte, J.L. Zakina, A drag reducing surfactant threadlike micelle system with unusual rheological responses to pH, J. Colloid Interface Sci. 418(2014) 95-102. |
[1] | Wenshi Huang, Yang Zhang, Yuxin Wu, Jingyu Wang, Minmin Zhou. Analysis of particle dispersion in a turbulent flow considering particle rotation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 29-39. |
[2] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[3] | Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143-152. |
[4] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 310-320. |
[5] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[6] | Zenan Wang, Xin Zheng, Yan Wang, Heng Lin, Hui Zhang. Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 399-405. |
[7] | Qingjun Zhang, Youguang Ma, Xigang Yuan, Aiwu Zeng. Box-Behnken experimental design for optimizing process parameters in carbonate-promoted direct thiophene carboxylation reaction with carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 222-234. |
[8] | Xiong Liu, Shuhuan Chen, Yu Ma, Wenjie Xiao. Enantioseparation of 3-chlorophenylglycine enantiomers using Mandyphos-Pd as chiral extractant [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 96-103. |
[9] | Lei Ma, Hongxia Lv, Haonan Yu, Lingtong Kong, Rongyue Zhang, Xiaoyan Guo, Haibo Jin, Guangxiang He, Xiaoyan Liu. In-depth investigation on the factors affecting the performance of high oil-absorption resin by response surface method [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 286-296. |
[10] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 242-252. |
[11] | Xin Yuan, Lujun Wang, Panliang Zhang, Weifeng Xu, Kewen Tang. Enantioselective esterification of (R,S)-2-(4-methylphenyl) propionic acid via Novozym 435: Optimization and application [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1816-1823. |
[12] | Mohammad Dana, Mohammad Amin Sobati, Shahrokh Shahhosseini, Aminreza Ansari. Optimization of a continuous ultrasound assisted oxidative desulfurization (UAOD) process of diesel using response surface methodology (RSM) considering operating cost [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1384-1396. |
[13] | Mingjie Ma, Huijuan Ying, Fangfang Cao, Qining Wang, Ning Ai. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1069-1076. |
[14] | Mohammed Abdullah Issa, Zurina Zainal Abidin, Shafreeza Sobri, Suraya Abdul-Rashid, Mohd Adzir Mahdi, Nor Azowa Ibrahim, Musa Y. Pudza. Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 584-592. |
[15] | M. A. Asidin, E. Suali, T. Jusnukin, F. A. Lahin. Review on the applications and developments of drag reducing polymer in turbulent pipe flow [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1921-1932. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 94
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 323
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||