Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (6): 1416-1428.DOI: 10.1016/j.cjche.2019.02.003
• Special Issue: Separation Process Intensification of Chemical Engineering • Previous Articles Next Articles
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su
Received:
2018-09-30
Revised:
2019-01-11
Online:
2019-08-19
Published:
2019-06-28
Contact:
Gang Xiao, Haijia Su
Supported by:
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su
通讯作者:
Gang Xiao, Haijia Su
基金资助:
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1416-1428.
Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants[J]. 中国化学工程学报, 2019, 27(6): 1416-1428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.02.003
[1] G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of Cu(Ⅱ) on membranetype biosorbent (MBS) of Penicillium biomass:Optimization using statistical design methods, Bioresour. Technol. 143(2013) 490-498. [2] G. Xiao, H. Su, T. Tan, Synthesis of core-shell bioaffinity chitosan-TiO2 composite and its environmental applications, J. Hazard. Mater. 283(2015) 888-896. [3] G. Xiao, X. Zhang, W. Zhang, et al., Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organicinorganic composites for water disinfection, Appl. Catal. B Environ. 170(2015) 255-262. [4] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27(2009) 195-226. [5] S.H. Ho, S. Zhu, J.S. Chang, Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal, Bioresour. Technol. 246(2017) 123-134. [6] J.Y. Lim, N.M. Mubarak, E.C. Abdullah, et al., Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review, J. Ind. Eng. Chem. 66(2018) 29-44. [7] C. Li, M. Zhang, H. Zhong, et al., Synthesis of a bioadsorbent from jute cellulose, and application for aqueous Cd(Ⅱ) removal, Carbohydr. Polym. 189(2018) 152-161. [8] T. Esfandiyari, N. Nasirizadeh, M. Dehghani, et al., Graphene oxide based carbon composite as adsorbent for Hg removal:Preparation, characterization, kinetics and isotherm studies, Chin. J. Chem. Eng. 25(2017) 1170-1175. [9] K.H. Kim, S.K. Ihm, Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters:a review, J. Hazard. Mater. 186(2011) 16-34. [10] X. Zhang, Y. Ma, L. Xi, et al., Highly efficient photocatalytic removal of multiple refractory organic pollutants by BiVO4/CH3COO(BiO) heterostructured nanocomposite, Sci. Total. Environ. 647(2019) 245-254. [11] M.A. El-Liethy, K.Z. Elwakeel, M.S. Ahmed, Comparison study of Ag(I) and Au(Ⅲ) loaded on magnetic thiourea-formaldehyde as disinfectants for water pathogenic microorganism's deactivation, J. Environ. Chem. Eng. 6(2018) 4380-4390. [12] J. Schneider, M. Matsuoka, M. Takeuchi, et al., Understanding TiO2 photocatalysis:mechanisms and materials, Chem. Rev. 114(2014) 9919-9986. [13] Y. Ide, N. Inami, H. Hattori, et al., Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment, Angew. Chem. Int. Ed. 55(2016) 3600-3605. [14] M. Pelaez, N.T. Nolan, S.C. Pillai, et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B Environ. 125(2012) 331-349. [15] K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis:a review, Chem. Rev. 116(2016) 14587-14619. [16] G. Xiao, Y. Zhao, L. Li, et al., Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO2 composites as recyclable nanocatalysts for 4-nitrophenol reduction, Nanotechnology 29(2018) 155601. [17] G. Varshney, S.R. Kanel, D.M. Kempisty, et al., Nanoscale TiO2 films and their application in remediation of organic pollutants, Coord. Chem. Rev. 306(2016) 43-64. [18] B. Jalvo, M. Faraldos, A. Bahamonde, et al., Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida, J. Hazard. Mater. 340(2017) 160-170. [19] X. Sheng, Z. Liu, R. Zeng, et al., Enhanced photocatalytic reaction at air-liquid-solid joint interfaces, J. Am. Chem. Soc. 139(2017) 12402-12405. [20] B. Volesky, Biosorption and me, Water Res. 41(2007) 4017-4029. [21] T.A. Nguyen, C.C. Fu, R.S. Juang, Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads, Chem. Eng. J. 304(2016) 313-324. [22] C. Wang, H. Wang, G. Gu, Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(Ⅱ) sorption, Carbohydr. Polym. 182(2018) 21-28. [23] H. Hamad, E. Bailón-García, S. Morales-Torres, et al., Physicochemical properties of new cellulose-TiO2 composites for the removal of water pollutants:Developing specific interactions and performances by cellulose functionalization, J. Environ. Chem. Eng. 6(2018) 5032-5041. [24] L. Wang, C. Zhang, F. Gao, et al., Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light, Chem. Eng. J. 314(2017) 622-630. [25] A. Muxika, A. Etxabide, J. Uranga, et al., Chitosan as a bioactive polymer:Processing, properties and applications, Int. J. Biol. Macromol. 105(2017) 1358. [26] A.E. Wiącek, A. Gozdecka, M. Jurak, Physicochemical characteristics of chitosan-TiO2 biomaterial. 1. stability and swelling properties, Ind. Eng. Chem. Res. 57(2018) 1859-1870. [27] L.N. Pincus, F. Melnikov, Y.J. Samani, et al., Multifunctional photoactive and selective adsorbent for arsenite and arsenate:Evaluation of nano titanium dioxide-enabled chitosan cross-linked with copper, J. Hazard. Mater. 358(2018) 145-154. [28] E. Chen, H. Su, W. Zhang, et al., A novel shape-controlled synthesis of dispersed silver nanoparticles by combined bioaffinity adsorption and TiO2 photocatalysis, Powder Technol. 212(2011) 166-172. [29] E. Chen, H. Su, T. Tan, Antimicrobial properties of silver nanoparticles synthesized by bioaffinity adsorption coupled with TiO2 photocatalysis, J. Chem. Technol. Biotechnol. 86(2011) 421-427. [30] Q. Li, H. Su, T. Tan, Synthesis of ion-imprinted chitosan-TiO2, adsorbent and its multi-functional performances, Biochem. Eng. J. 38(2008) 212-218. [31] X. Zhang, G. Xiao, Y. Wang, et al., Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications, Carbohydr. Polym. 169(2017) 101-107. [32] Y. Zhao, C. Tao, G. Xiao, et al., Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film, RSC Adv. 7(2017) 11211-11221. [33] F. Ding, H. Deng, Y. Du, et al., Emerging chitin and chitosan nanofibrous materials for biomedical applications, Nanoscale 6(2014) 9477-9493. [34] V. Sencadas, D.M. Correia, A. Areias, et al., Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology, Carbohydr. Polym. 87(2012) 1295-1301. [35] F. Ali, S.B. Khan, T. Kamal, et al., Chitosan-titanium oxide fibers supported zerovalent nanoparticles:Highly efficient and easily retrievable catalyst for the removal of organic pollutants, Sci. Rep. 8(2018) 6260. [36] R.F. Perez, M.A. Fraga, Hemicellulose-derived chemicals:One-step production of furfuryl alcohol from xylose, Green Chem. 16(2014) 3942-3950. [37] J. Ríos-Gómez, B. Ferrer-Monteagudo, Á.I. López-Lorente, et al., Efficient combined sorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films, J. Clean Prod. 194(2018) 167-173. [38] A.M. ElNahrawy, A.A. Haroun, I. Hamadneh, et al., Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole, Carbohydr. Polym. 168(2017) 182-190. [39] G. Zhang, L. Chen, X. Fu, et al., Cellulose microfiber-supported TiO2@Ag nanocomposites:A dual-functional platform for photocatalysis and in situ reaction monitoring, Ind. Eng. Chem. Res. 57(2018) 4277-4286. [40] X. Zhang, S. Jing, Z. Chen, et al., Fabricating 3d hierarchical porous TiO2, and SiO2, with high specific surface area by using nanofibril-interconnected cellulose aerogel as a new biotemplate, Ind. Crop Prod. 109(2017) 790-802. [41] D.H. Yu, X. Yu, C. Wang, et al., Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties, ACS Appl. Mater. Interfaces 4(2012) 2781-2787. [42] W. Hu, S. Chen, J. Yang, et al., Functionalized bacterial cellulose derivatives and nanocomposites, Carbohydr. Polym. 101(2014) 1043-1060. [43] A.T. Kuvarega, B.B. Mamba, TiO2-based Photocatalysis:toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites, Crit. Rev. Solid State Mater. Sci. 42(2016) 1-52. [44] A.M. Mohamed, A.M. Muhazri, A.M.H. Zul, et al., An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications, Int. J. Biol. Macromol. 103(2017) 1232-1256. [45] N. Dal'Acqua, A.B. Mattos, I. Krindges, et al., Characterization and application of nanostructured films containing Au and TiO2 nanoparticles supported in bacterial cellulose, J. Phys. Chem. C 119(2014) 340-349. [46] F. Shi, T. Yu, S.C. Hu, et al., Synthesis of highly porous SiO2-(WO3)x·TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization, Chem. Eng. J. 292(2016) 105-112. [47] H. Huang, Y. Wang, C. Zou, et al., Titania tube-in-tube scaffolds with multilengthscale structural hierarchy and structure-enhanced functional performance, J. Phys. Chem. C 119(2015) 17552-17560. [48] J. Gutierrez, A. Tercjak, I. Algar, et al., Conductive properties of TiO2/bacterial cellulose hybrid fibres, J. Colloid Interface Sci. 377(2012) 88-93. [49] S. Li, S. Zhao, S. Qiang, et al., A novel zein/poly (propylene carbonate)/nano-TiO2 composite films with enhanced photocatalytic and antibacterial activity, Process Biochem. 70(2018) 198-205. [50] B. Jin, X. Li, X. Zhou, et al., Fabrication and characterization of nanocomposite film made from a jackfruit filum polysaccharide incorporating TiO2 nanoparticles by photocatalysis, RSC Adv. 7(2017) 16931-16937. [51] H. Kobayashi, A. Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chem. 15(2013) 1740-1763. [52] X. Chen, D.-H. Kuo, D. Lu, et al., Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template, Microporous Mesoporous Mater. 223(2016) 145-151. [53] N. Srisasiwimon, S. Chuangchote, N. Laosiripojana, et al., TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals, ACS Sustain. Chem. Eng. 6(2018) 13968-13976. [54] H. Huo, H. Su, T. Tan, The influence of trace TiO2, on adsorption of Ag+-imprinted adsorbents made from chitosan and mycelium, Biotechnol. Bioprocess Eng. 13(2008) 77-83. [55] J.A. Maciá-Agulló, A. Corma, H. Garcia, Photobiocatalysis:The power of combining photocatalysis and enzymes, Chem. Eur. J. 21(2015) 10940-10959. [56] M.A. Mohamed, W.N.W. Salleh, J. Jaafar, et al., Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2:Bio-template assisted sol-gel synthesis and photocatalytic activity, Appl. Surf. Sci. 393(2017) 46-59. [57] T. Qian, H. Su, T. Tan, The bactericidal and mildew-proof activity of a TiO2-chitosan composite, Journal of Photochemistry & Photobiology A Chemistry 218(2011) 130-136. [58] D. Delai'aSun, Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications, New J. Chem. 35(2011) 137-140. [59] M.N.I. Amir, N.M. Julkapli, S.B.A. Hamid, Incorporation of chitosan and glass substrate for improvement in adsorption, separation, and stability of TiO2 photodegradation, Int. J. Environ. Sci. Technol. 13(2016) 865-874. [60] S. Mahdavi, Nano-TiO2, modified with natural and chemical compounds as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+, from water, Clean Techn. Environ. Policy. 18(2016) 81-94. [61] L. Zhang, W. Xia, X. Liu, et al., Synthesis of titanium cross-linked chitosan composite for efficient adsorption and detoxification of hexavalent chromium from water, J. Mater. Chem. A 3(2014) 331-340. [62] S. Wu, J. Kan, X. Dai, et al., Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2, composite as effective adsorbent for removal of heavy metal contaminants from water, Fibers Polym. 18(2017) 22-32. [63] R. Karthik, S. Meenakshi, Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan, Chem. Eng. J. 263(2015) 168-177. [64] S. Komatsuda, Y. Asakura, J.J.M. Vequizo, et al., Enhanced photocatalytic NOx decomposition of visible-light responsive F-TiO2/(N,C)-TiO2 by charge transfer between FTiO2 and (N,C)-TiO2 through their doping levels, Appl. Catal. B Environ. 238(2018) 358-364. [65] L.N. Pincus, F. Melnikov, J.S. Yamani, et al., Multifunctional photoactive and selective adsorbent for arsenite and arsenate:Evaluation of Nano titanium dioxide-enabled chitosan cross-linked with copper, J. Hazard. Mater. 358(2018) 145-154. [66] Y. Tao, L. Ye, J. Pan, et al., Removal of Pb(Ⅱ) from aqueous solution on chitosan/TiO (2) hybrid film, J. Hazard. Mater. 161(2009) 718-722. [67] Z. Zainal, L.K. Hui, M.Z. Hussein, et al., Characterization of TiO(2)-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process, J. Hazard. Mater. 164(2009) 138-145. [68] J. Ríos-Gómez, B. Ferrer-Monteagudo, A.I. López-Lorente, et al., Efficient combined absorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films, J. Clean Prod. 194(2018) 167-173. [69] P. Magesan, S. Sanuja, M.J. Umapathy, Novel hybrid chitosan blended MoO3-TiO2 nanocomposite film:Evaluation of its solar light photocatalytic and antibacterial activities, RSC Adv. 5(2015) 42506-42515. [70] H. Zhu, R. Jiang, L. Xiao, et al., CdS nanocrystals/TiO2/crosslinked chitosan composite:Facile preparation, characterization and adsorption-photocatalytic properties, Appl. Surf. Sci. 273(2013) 661-669. [71] H. Zhu, R. Jiang, Y. Fu, et al., Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation, Desalination 286(2012) 41-48. [72] M.H. Farzana, S. Meenakshi, Synergistic effect of chitosan and titanium dioxide on the removal of toxic dyes by the photodegradation technique, Ind. Eng. Chem. Res. 53(2013) 55-63. [73] M.S. Stan, I.C. Nica, A. Dinischiotu, et al., Photocatalytic, antimicrobial and biocompatibility features of cotton knit coated with Fe-N-doped titanium dioxide nanoparticles, Materials 9(2016) 789. [74] E.P. Favvas, G.E. Romanos, Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res. 46(2012) 1858-1872. [75] X. Zhang, X. Zhao, H. Su, Degradation characteristic of TiO2-chitosan adsorbent on Rhodamine B and purification of industrial wastewater, Korean J. Chem. Eng. 28(2011) 1241-1246. [76] K.J. Rao, S. Paria, Phytochemicals mediated synthesis of multifunctional Ag-Au-TiO2, heterostructure for photocatalytic and antimicrobial applications, J. Clean. Prod. 165(2017) 360-368. [77] L. Frunza, L. Diamandescu, I. Zgura, et al., Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2, nanoparticles:Methylene blue degradation as a test reaction, Catal. Today 306(2017) 251-259. [78] S.G. Kuntzler, J.A.V. Costa, M.G.D. Morais, Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity, Int. J. Biol. Macromol. 117(2018) 800-806. [79] K. Dutta, K. Nag, V. Booth, et al., Paradoxical bactericidal effects of hydrophobic lung surfactant proteins and their peptide mimics using liposome molecular Trojan, J. Oleo Sci. 67(2018) 1043-1057. [80] Liu X. Fei, Guan Y. Lin, Yang D. Zhi, et al., Antibacterial action of chitosan and carboxymethylated chitosan, J. Appl. Polym. Sci. 79(2015) 1324-1335. [81] U. Siripatrawan, P. Kaewklin, Fabrication and characterization of multifunctional active food packaging from chitosan-titanium dioxide nanocomposite as ethylene scavenging and antimicrobial film, Food Hydrocoll. 84(2018) 125-134. [82] A.V. Raut, H.M. Yadav, A. Gnanamani, et al., Synthesis and characterization of chitosan-TiO2:Cu nanocomposite and their enhanced antimicrobial activity with visible light, Colloids Surf. B:Biointerfaces 148(2016) 566-575. [83] G. Xiao, X. Zhang, Y. Zhao, et al., The behavior of active bactericidal and antifungal coating under visible light irradiation, Appl. Surf. Sci. 292(2014) 756-763. [84] W. Xu, W. Xie, X. Huang, et al., The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research, Food Chem. 221(2017) 267-277. [85] B. Li, Y. Hao, X. Shao, et al., Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol, J. Catal. 329(2015) 368-378. [86] L. Huang, W. Fu, X. Fu, et al., Facile and large-scale preparation of N doped TiO2 photocatalyst with high visible light photocatalytic activity, Mater. Lett. 209(2017) 585-588. [87] L. Lopez, W.A. Daoud, D. Dutta, Preparation of large scale photocatalytic TiO2 films by the sol-gel process, Surf. Coat Technol. 205(2010) 251-257. [88] C. Wang, H. Liu, Y. Qu, TiO2-based photocatalytic process for purification of polluted water:bridging fundamentals to applications, J. Nanomater. 2013(2013) 1. [89] S.Y.A. Salgado, R.M.R. Zamora, R. Zanella, et al., Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photocatalyst, Int. J. Hydrog. Energy 41(2016) 11933-11940. [90] M.I. Maldonado, A. López-Martín, G. Colón, et al., Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors, Appl. Catal. B Environ. 229(2018) 15-23. [91] B. Gupta, A.A. Melvin, T. Matthews, et al., TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production, Renew. Sust. Energ. Rev. 58(2016) 1366-1375. [92] H. Zhao, Preparation of photocatalyst titanium dioxide and its application in printing and dyeing wastewater treatment, Thesis in Chinese, Tianjin University, 2009. |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[3] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[4] | Zhen He, Yu Zhou, Yuxin Wang, Pingyi Guo, Wensen Jiang, Caizhen Yao, Xin Shu. Preparation and properties of Ni-W-P-TiO2 nanocomposite coatings developed by a sol-enhanced electroplating method [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 369-376. |
[5] | Xingmei Guo, Jinfeng Xie, Jing Wang, Shangqing Sun, Feng Zhang, Fu Cao, Yuanjun Liu, Xiangjun Zheng, Junhao Zhang, Qinghong Kong. Fabricating titanium dioxide/N-doped carbon nanofibers as advanced interlayer for improving cycling reversibility of lithium-sulfur batteries [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 88-94. |
[6] | Yingzhen Zhang, Yonggang Lei, Tianxue Zhu, Zengxing Li, Shen Xu, Jianying Huang, Xiao Li, Weilong Cai, Yuekun Lai, Xiaojun Bao. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 403-411. |
[7] | Raza Ullah, Jihong Sun, Anadil Gul, Tallat Munir, Xia Wu. Evaluations of physico-chemical properties of TiO2/clinoptilolite synthesized via three methods on photocatalytic degradation of crystal violet [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 181-189. |
[8] | Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 67-74. |
[9] | Zihao Yao, Jinyan Zhao, Chenxia Zhao, Shengwei Deng, Guilin Zhuang, Xing Zhong, Zhongzhe Wei, Yang Li, Shibin Wang, Jianguo Wang. A first-principles study of reaction mechanism over carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2 [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 126-134. |
[10] | Yuan Su, Keming Ji, Jiayao Xun, Kan Zhang, Ping Liu, Liang Zhao. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 190-195. |
[11] | Lan Lan, Yan Shao, Yilai Jiao, Rongxin Zhang, Christopher Hardacre, Xiaolei Fan. Systematic study of H2 production from catalytic photoreforming of cellulose over Pt catalysts supported on TiO2 [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2084-2091. |
[12] | Dai Shi, He Yang, Xiangxin Xue. Preparation, characterization and antibacterial properties of cobalt doped titania nanomaterials [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1474-1482. |
[13] | Fan Pan, Guobing Zhou, Liangliang Huang, Wei Li, Mingshen Lin, Chang Liu. Interfacial potassium induced enhanced Raman spectroscopy for single-crystal TiO2 nanowhisker [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 889-895. |
[14] | Yahua Lu, Zhenping Qin, Naixin Wang, Hongxia Guo, Quanfu An, Yucang Liang. TiO2-incorporated polyelectrolyte composite membrane with transformable hydrophilicity/hydrophobicity for nanofiltration separation [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2533-2541. |
[15] | Zhenxiao Lu, Wenxian Wang, Jun Zhou, Zhongchao Bai. FeS2@TiO2 nanorods as high-performance anode for sodium ion battery [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2699-2706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||