Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (6): 1429-1438.DOI: 10.1016/j.cjche.2019.02.004
• Special Issue: Separation Process Intensification of Chemical Engineering • Previous Articles Next Articles
Mingyang Chen1, Dejiang Zhang1, Weibing Dong1,2, Zhilong Luo3, Chao Kang3, Haichao Li2, Gang Wang2, Junbo Gong1,4,5
Received:
2018-06-25
Revised:
2018-12-21
Online:
2019-08-19
Published:
2019-06-28
Contact:
Junbo Gong
Supported by:
Mingyang Chen1, Dejiang Zhang1, Weibing Dong1,2, Zhilong Luo3, Chao Kang3, Haichao Li2, Gang Wang2, Junbo Gong1,4,5
通讯作者:
Junbo Gong
基金资助:
Mingyang Chen, Dejiang Zhang, Weibing Dong, Zhilong Luo, Chao Kang, Haichao Li, Gang Wang, Junbo Gong. Amorphous and humidity caking: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1429-1438.
Mingyang Chen, Dejiang Zhang, Weibing Dong, Zhilong Luo, Chao Kang, Haichao Li, Gang Wang, Junbo Gong. Amorphous and humidity caking: A review[J]. 中国化学工程学报, 2019, 27(6): 1429-1438.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.02.004
[1] T. Freeman, K. Brockbank, B. Armstrong, Measurement and quantification of caking in powders, Procedia Eng. 102(2015) 35-44. [2] T.M. Lowry, F.C. Hemmings, Properties of powders. I. Caking of salts, London Sect. Soc. Chem. Ind. Faraday Soc. 39(1920) 101-110. [3] J.R. Adams, A.R. Merz, Hygroscopicity of fertilizer materials and mixtures, Ind. Eng. Chem. 21(1929) 305-307. [4] J. Aguilera, J.D. Valle, M. Karel, Caking phenomena in amorphous food powders, Trends Food Sci. Technol. 6(5) (1995) 149-155. [5] M. Carpin, H. Bertelsen, J.K. Bech, R. Jeantet, J. Risbo, P. Schuck, Caking of lactose:A critical review, Trends Food Sci. Technol. 53(2016) 1-12. [6] S. Palzer, The effect of glass transition on the desired and undesired agglomeration of amorphous food powders, Chem. Eng. Sci. 60(14) (2005) 3959-3968. [7] D.I.W. Pietsch, Agglomeration Processes:Phenomena, Technologies, Equipment, Wiley, Darmstadt, 2008. [8] A.B. Khadilkar, P.L. Rozelle, S.V. Pisupati, A study on initiation of ash agglomeration in fluidized bed gasification systems, Fuel 152(2015) 48-57. [9] L. Malafronte, L. Ahrné, F. Innings, A. Jongsma, A. Rasmuson, Prediction of regions of coalescence and agglomeration along a spray dryer-Application to skim milk powder, Chem. Eng. Res. Des. 104(2015) 703-712. [10] F. Thielmann, M. Naderi, M.A. Ansari, F. Stepanek, The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation, Powder Technol. 181(2) (2008) 160-168. [11] E.M. Ålander, Åke C. Rasmuson, Agglomeration and adhesion free energy of paracetamol crystals in organic solvents, AIChE J. 53(10) (2007) 2590-2605. [12] J. Cleaver, G. Karatzas, S. Louis, I. Hayati, Moisture-induced caking of boric acid powder, Powder Technol. 146(1-2) (2004) 93-101. [13] U. Bröckel, M. Wahl, R. Kirsch, H.J. Feise, Formation and growth of crystal bridges in bulk solids, Chem. Eng. Technol. 29(6) (2006) 691-695. [14] W. Pietsch, Agglomeration in Industry, Wiley, Darmstadt, 2004. [15] L. Wang, Influencing factors on caking of compound fertilizer and their countermeasures, Ningxia J. Agric. For. Sci. Technol. 54(1) (2013) 44-46. [16] Y. Tong, Influencing factors and experimental method of edible salt caking, J. Salt Chem. Ind. 42(5) (2013) 8-13. [17] L. Liu, Aggregation of silica nanoparticles in an aqueous suspension, AIChE J. 61(7) (2015) 2136-2146. [18] X. Tan, H. Fenniri, M.R. Gray, Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding, Energy Fuel 23(7) (2009) 3687-3693. [19] A.W. Pacek, P. Ding, A.T. Utomo, Effect of energy density, PH and temperature on de-aggregation in nano-particles/water suspensions in high shear mixer, Powder Technol. 173(3) (2007) 203-210. [20] W.R. Richmond, R.L. Jones, P.D. Fawell, The relationship between particle aggregation and rheology in mixed silica-titania suspensions, Chem. Eng. J. 71(1) (1998) 67-75. [21] T.M. Lowry, E.E. Walker, The properties of potyders. Part Ⅱ. Expansion and shrinkage during caking of potassium carbonate, Faraday Soc (1922) 78-81. [22] J. Silverberg, J.R. Lehr, G. H. Jr, Fertilizer caking, microscopic study of the mechanism of caking and its prevention in some granular fertilizers, J. Agric. Food Chem. 6(6) (1958) 442-448. [23] W.A. Mitchell, An investigation into the caking of granular fertilizers, J. Sci. Food Agric. 5(9) (1954) 455-456. [24] A.L. Whynes, T.P. Dee, The caking of granular fertilizers:An investigation on a laboratory scale, J. Sci. Food Agric. 8(8) (1957) 577-591. [25] W.J. Tucker, Surfactants in fertilizers, effects of surface active agents on caking of stored mixed fertilizer, J. Agric. Food Chem. 3(8) (1955) 669-672. [26] G.L. Tucker, L.F. Roy, Caking in ammonium phosphate fertilizers, J. Agric. Food Chem. 17(6) (1969) 1279-1283. [27] Y. Peleg, C.H. Mannheim, Caking of onion powder, J. Food Technol. 4(2) (1969) 157-160. [28] R.L. Gilbert, P.W. Knapp, Development of an accelerated caking test for urea, J. Agric. Food Chem. 18(3) (1970) 397-400. [29] C. Sjolin, Mechanism of caking of ammonium nitrate (NH4NO3) prills, J. Agric. Food Chem. 20(4) (1972) 895-900. [30] A. Lafci, K. Gürüz, H. Yücel, Investigation of factors affecting caking tendency of calcium ammonium nitrate fertilizer and coating experiments, Nutr. Cycl. Agroecosyst. 18(1) (1988) 63-70. [31] O. Akinobu, S. Kazumi, D. Kazumi, S. Hisakazu, S. Yusaku, Caking of δ-Dgluconolactone powder, Chem. Pharm. Bull. 23(1975) 673-676. [32] T. Tanaka, Evaluating the caking strength of powders, Ind. Eng. Chem. Prod. Res. Dev. 17(3) (1978) 241-246. [33] D.W. Rutland, Fertilizer caking:Mechanisms, influential factors, and methods of prevention, Nutr. Cycl. Agroecosyst. 30(1) (1991) 99-114. [34] R.J. Lloyd, X.D. Chen, J.B. Hargreaves, Glass transition and caking of spray-dried lactose, Int. J. Food Sci. Technol. 31(4) (1996) 305-311. [35] G.M. Walker, C. R. H., M.N. Ahmad, J. N. F., A.G. Kells, Granular fertilizer agglomeration in accelerated caking tests, Ind. Eng. Chem. Res. 38(10) (1999) 4100-4103. [36] N. Wakiyama, A. Kusai, K. Nishimura, Mechanism of caking of granules containing oily materials, Int. J. Pharm. 78(2-3) (1992) 95-102. [37] Y.L. Chen, J.Y. Chou, Selection of anti-caking agents through crystallization, Powder Technol. 77(1) (1993) 1-6. [38] B. Rogé, M. Mathlouthi, Caking of white crystalline sugar, Int. Sugar J. 105(1251) (2003) 128-136. [39] C.I. Beristain, E. Azuara, T.T. Tamayo, E.J. Vernoncarter, Effect of caking and stickiness on theretention of spray-dried encapsulated orange peel oil, J. Sci. Food Agric. 83(15) (2003) 1613-1616. [40] M. Mathlouthi, B. Rogé, Water vapour sorption isotherms and the caking of food powders, Food Chem. 82(1) (2003) 61-71. [41] Y. Yokogawa, Y. Shiotsu, F. Nagata, M. Watanabe, Apatite hydrogel and its caking behavior, Key Eng. Mater. 254-256(2003) 63-66. [42] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Role of amorphous lactose in the caking of α-lactose monohydrate powders, Aust. J. Dairy Technol. 60(1) (2005) 19-32. [43] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Properties of lactose and its caking behavior, Aust. J. Dairy Technol. 60(1) (2005) 33-52. [44] M. Röck, J. Schwedes, Investigations on the caking behaviour of bulk solidsmacroscale experiments, Powder Technol. 157(1-3) (2005) 121-127. [45] A.K. Salameh, L.S. Taylor, Deliquescence-induced caking in binary powder blends, Pharm. Dev. Technol. 11(4) (2006) 453-464. [46] B. Weigl, Y. Pengiran, H.J. Feise, M. Röck, R. Janssen, Comparative testing of powder caking, Chem. Eng. Technol. 29(6) (2006) 686-690. [47] M. Wahl, R. Kirsch, U. Bröckel, S. Trapp, M. Bottlinger, Caking of urea prills, Chem. Eng. Technol. 29(6) (2006) 674-678. [48] S.W. Billings, J.E. Bronlund, A.H.J. Paterson, Effects of capillary condensation on the caking of bulk sucrose, J. Food Eng. 77(4) (2006) 887-895. [49] M. Röck, M. Ostendorf, J. Schwedes, Development of an uniaxial caking tester, Chem. Eng. Technol. 29(6) (2006) 679-685. [50] R. Ruan, Y.J. Choi, M.S. Chung, Caking in food powders, Food Sci. Biotechnol. 16(3) (2007) 329-336. [51] J.J. Fitzpatrick, M. Hodnett, M. Twomey, P.S.M. Cerqueira, J. O'Flynn, Y.H. Roos, Glass transition and the flowability and caking of powders containing amorphous lactose, Powder Technol. 178(2) (2007) 119-128. [52] J.J. Fitzpatrick, E. O'Callaghan, J. O'Flynn, Application of a novel cake strength tester for investigating caking of skim milk powder, Food Bioprod. Process. 86(3) (2008) 198-203. [53] Y. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, Moisture sorption, compressibility and caking of lactose polymorphs, Int. J. Pharm. 359(1-2) (2008) 123-134. [54] J.J. Fitzpatrick, N. Descamps, K. O'Meara, C. Jones, D. Walsh, M. Spitere, Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt, Powder Technol. 204(1) (2010) 131-137. [55] M.E. Chávez, N.A. Santamaría, J.C. Gumy, P. Marchal, Moisture-induced caking of beverage powder, J. Sci. Food Agric. 91(14) (2011) 2582. [56] D.M. Oliveira, E. Clemente, J.M.C.D. Costa, Hygroscopic behavior and degree of caking of grugru palm (Acrocomia aculeata) powder, J. Food Sci. Technol. 51(10) (2014) 2783-2789. [57] K. Arp, K.E. Ileleji, R.L. Stroshine, Stress relaxation behavior of corn distillers dried grains with solubles (DDGS) in relation to caking, Powder Technol. 235(3) (2013) 209-211. [58] G. Calvert, N. Curcic, C. Redhead, H. Ahmadian, C. Owen, D. Beckett, A new environmental bulk powder caking tester, Powder Technol. 249(11) (2013) 323-329. [59] N. Descamps, S. Palzer, Y.H. Roos, J.J. Fitzpatrick, Glass transition and flowability/caking behaviour of maltodextrin DE 21, J. Food Eng. 119(4) (2013) 809-813. [60] C.I. Haider, M.J. Hounslow, A.D. Salman, T.O. Althaus, G. Niederreiter, S. Palzer, Influence of environmental conditions on caking mechanisms in individual amorphous food particle contacts, AIChE J. 60(8) (2014) 2774-2787. [61] S. Baueregger, M. Perello, J. Plank, Influence of anti-caking agent kaolin on film formation of ethylene-vinylacetate and carboxylated styrene-butadiene latex polymers, Cem. Concr. Res. 58(58) (2014) 112-120. [62] A.H.J. Paterson, U. Bröckel, Caking development in lemon juice powder, Procedia Eng. 102(2015) 142-149. [63] C. Modugno, A.H.J. Paterson, J. Mcleod, Lactose caking:Influence of the particle size distribution and the water content, Procedia Eng. 102(2015) 114-122. [64] M. Dupas-Langlet, M. Benali, I. Pezron, K. Saleh, L. Metlas-Komunjer, The impact of deliquescence lowering on the caking of powder mixtures, Powder Technol. 270(2015) 502-509. [65] M.F. Saleh, R.M. Dhenge, J.J. Cartwright, M.J. Hounslow, A.D. Salman, Twin screw wet granulation:Effect of process and formulation variables on powder caking during production, Int. J. Pharm. 496(2) (2015) 571-582. [66] K. Brockbank, B. Armstrong, Y. Chandorkar, T. Freeman, Understanding powder caking as a consequence of a range of mechanisms by means of powder rheometry, Part. Sci. Technol. 33(1) (2014) 102-108(7). [67] T.W.Y. Tham, C. Wang, A.T.H. Yeoh, W. Zhou, Moisture sorption isotherm and caking properties of infant formulas, J. Food Eng. 175(2015) 117-126. [68] A.B. Albadarin, T.D. Lewis, G.M. Walker, Granulated polyhalite fertilizer caking propensity, Powder Technol. 308(2017) 193-199. [69] M. Carpin, H. Bertelsen, A. Dalberg, C. Roiland, J. Risbo, P. Schuck, Impurities enhance caking in lactose powder, J. Food Eng. 198(2017) 91-97. [70] J. Petit, F. Michaux, C. Jacquot, E.C. Montes, J. Dupas, V. Girard, Storage-induced caking of cocoa powder, J. Food Eng. 199(2017) 42-53. [71] T.W. Tham, X. Xu, A.T. Yeoh, W. Zhou, Investigation of caking by fat bridging in aged infant formula, Food Chem. 218(2017) 30-39. [72] M.C. Leaper, M. Bradley, J. Cleaver, Constructing an engineering model for moisture migration in bulk solids as a prelude to predicting moisture migration caking, Adv. Powder Technol. 13(4) (2002) 411-424. [73] L. Komunjer, C. Affolter, Absorption-evaporation kinetics of water vapour on highly hygroscopic powder:case of ammonium nitrate, Powder Technol. 157(1) (2005) 67-71. [74] N. Christakis, J. Wang, M.K. Patel, M.S.A. Bradley, M.C. Leaper, M. Cross, Aggregation and caking processes of granular materials:Continuum model and numerical simulation with application to sugar, Adv. Powder Technol. 17(5) (2006) 543-565. [75] S.W. Billings, A.H.J. Paterson, Prediction of the onset of caking in sucrose from temperature induced moisture movement, J. Food Eng. 88(4) (2008) 466-473. [76] M. Hartmann, S. Palzer, Caking of amorphous powders-Material aspects, modelling and applications, Powder Technol. 206(1-2) (2011) 112-121. [77] M. Langlet, M. Benali, I. Pezron, K. Saleh, P. Guigon, L. Metlas-Komunjer, Caking of sodium chloride:Role of ambient relative humidity in dissolution and recrystallization process, Chem. Eng. Sci. 86(5) (2013) 78-86. [78] M. Chen, S. Wu, W. Tang, J. Gong, Caking and adhesion free energy of maltitol:Studying of mechanism in adhesion process, Powder Technol. 272(2015) 235-240. [79] M. Chen, L. Lin, Y. Zhang, S. Wu, E. Liu, K. Wang, J. Wang, J. Gong, Mechanism and inhibition of trisodium phosphate particle caking:effect of particle shape and solubility, Particuology 253(8) (2015) 115-121. [80] Z. Afrassiabian, M. Leturia, M. Benali, M. Guessasma, K. Saleh, An overview of the role of capillary condensation in wet caking of powders, Chem. Eng. Res. Des. 110(2016) 245-254. [81] R.A. Lipasek, J.C. Ortiz, L.S. Taylor, L.J. Mauer, Effects of anticaking agents and storage conditions on the moisture sorption, caking, and flowability of deliquescent ingredients, Food Res. Int. 45(1) (2012) 369-380. [82] D. Wang, J. Chu, J. Li, T. Qi, W. Wang, Anti-caking in the production of titanium dioxide using low-grade titanium slag via the NaOH molten salt method, Powder Technol. 232(4) (2012) 99-105. [83] P. Ramachandran, M.N. Poojitha, N. Srividya, Influence of maltodextrin and nutritive anti-caking agents on quality characteristics and storage stability of papaya powder, Res. J. Pharm., Biol. Chem. Sci. 5(2) (2014) 1108-1123. [84] M.S. Chung, R.R. Ruan, P. Chen, S.H. Chung, T.H. Ahn, K.H. Lee, Study of caking in powdered foods using nuclear magnetic resonance spectroscopy, J. Food Sci. 65(1) (2000) 134-138. [85] M.S. Chung, R. Ruan, P. Chen, Y.G. Lee, T.H. Ahn, C.K. Baik, Formulation of cakingresistant powdered soups based on NMR analysis, J. Food Sci. 66(8) (2001) 1147-1151. [86] M.S. Chung, R. Ruan, P. Chen, J.H. Kim, T.H. Ahn, C.K. Baik, Predicting caking behaviors in powdered foods using a low-field nuclear magnetic resonance (NMR) technique, Food Sci. Technol. 36(8) (2003) 751-761. [87] C.I. Cheigh, H.W. Wee, M.S. Chung, Caking characteristics and sensory attributes of ramen soup powder evaluated using a low-resolution proton NMR technique, Food Res. Int. 44(4) (2011) 1102-1107. [88] Y.D. Listiohadi, J.A. Hourigan, R.W. Sleigh, R.J. Steele, An exploration of the caking of lactose in whey and skim milk powders, Aust. J. Dairy Technol. 60(3) (2005) 207-213. [89] D.C. Prime, A.G.F. Stapley, C.D. Rielly, J.R. Jones, M.C. Leaper, Analysis of powder caking in multicomponent powders using atomic force microscopy to examine particle properties, Chem. Eng. Technol. 34(1) (2011) 98-102. [90] A.A.C. Bode, S. Jiang, J.A.M. Meijer, W.J.P.V. Enckevort, E. Vlieg, Growth inhibition of sodium chloride crystals by anticaking agents:in situ observation of step pinning, Cryst. Growth Des. 12(12) (2012) 5889-5896. [91] A.A.C. Bode, M. Verschuren, M. Jansen, S. Jiang, J.A.M. Meijer, W.J.P.V. Enckevort, Influence of anticaking agents on the caking of sodium chloride at the powder and two-crystal scale, Powder Technol. 277(2015) 262-267. [92] M. Wahl, U. Bröckel, L. Brendel, H.J. Feise, B. Weigl, M. Röck, Understanding powder caking:predicting caking strength from individual particle contacts, Powder Technol. 188(2) (2008) 147-152. [93] S.C. Thakur, H. Ahmadian, S. Jin, Y.O. Jin, An experimental and numerical study of packing, compression, and caking behaviour of detergent powders, Particuology 12(1) (2014) 2-12. [94] P. St, The relation between material properties and supra-molecular structure of water-soluble food solids, Trends Food Sci. Technol. 21(1) (2010) 12-25. [95] A.M. Stoklosa, R.A. Lipasek, L.S. Taylor, L.J. Mauer, Effects of storage conditions, formulation, and particle size on moisture sorption and flowability of powders:A study of deliquescent ingredient blends, Food Res. Int. 49(2) (2012) 783-791. [96] J.M. Aguilera, G. Levi, M. Karel, Effect of water content on the glass transition and caking of fish protein hydrolyzates, Biotechnol. Prog. 9(6) (1993) 651-654. [97] M. Yoshioka, B.C. Hancock, G. Zografi, Crystallization of indomethacin from the amorphous state below and above its glass transition temperature, J. Pharm. Sci. 83(12) (1994) 1700-1705. [98] E.A. Schmitt, D. Law, G.G.Z. Zhang, Nucleation and crystallization kinetics of hydrated amorphous lactose above the glass transition temperature, J. Pharm. Sci. 88(3) (1999) 291-296. [99] D. Dopfer, S. Palzer, S. Heinrich, L. Fries, S. Antonyuk, C. Haider, Adhesion mechanisms between water soluble particles, Powder Technol. 238(2013) 35-49. [100] L.E. Chuy, T.P. Labuza, Caking and stickiness of dairy-based food powders as related to glass transition, J. Food Sci. 59(1) (1994) 43-46. [101] L.O. Figura, The physical modification of lactose and its thermoanalytical identification, Thermochim. Acta 222(2) (1993) 187-194. [102] T.G. Fox, P.J. Flory, Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight, J. Appl. Phys. 21(6) (1950) 581-591. [103] M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, JACS 77(14) (1955) 3701-3707. [104] H.J. Butt, M. Kappl, Normal capillary forces, Adv. Colloid Interf. Sci. 146(1-2) (2009) 48-60. [105] J.A. Baird, R. Olayo-Valles, C. Rinaldi, L.S. Taylor, Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol, J. Pharm. Sci. 99(1) (2010) 154-168. [106] L.J. Mauer, L.S. Taylor, Deliquescence of pharmaceutical systems, Pharm. Dev. Technol. 15(6) (2010) 582-594(13). [107] S. Sheokand, S.R. Modi, A.K. Bansal, Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials, J. Pharm. Sci. 103(11) (2014) 3364-3376. [108] A.W. Jenike, Gravity Flow of Bulk Solids, Bulletin No. 108, Utah State University, 1961. [109] J.J. Fitzpatrick, K. Barry, C. Psm, T. Iqbal, J. O'Neill, Y.H. Roos, Effect of composition and storage conditions on the flowability of dairy powders, Int. Dairy J. 17(4) (2007) 383-392. [110] J. Schwedes, Review on testers for measuring flow properties of bulk solids, Granul. Matter 5(1) (2003) 1-43. [111] A. Hassanpour, M. Ghadiri, Characterisation of flowability of loosely compacted cohesive powders by indentation, Part. Part. Syst. Charact. 24(2) (2007) 117-123. [112] P. Pierrat, H.S. Caram, Tensile strength of wet granular materials, Powder Technol. 91(2) (1997) 83-93. [113] P.G.C. Petean, M.L. Aguiar, Determining the adhesion force between particles and rough surfaces, Powder Technol. 274(2015) 67-76. [114] T. He, W. Zhong, B. Jin, Comparison of construction method for DEM simulation of ellipsoidal particles, Chin. J. Chem. Eng. 21(7) (2013) 800-807. [115] J. Emmerich, Q. Tang, Y. Wang, P. Neubauer, S. Junne, S. Maaß, Optical inline analysis and monitoring of particle size and shape distributions for multiple applications:Scientific and industrial relevance, Chin. J. Chem. Eng. 27(2) (2019) 257-277. |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Wenshi Huang, Yang Zhang, Yuxin Wu, Jingyu Wang, Minmin Zhou. Analysis of particle dispersion in a turbulent flow considering particle rotation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 29-39. |
[3] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[4] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[5] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[6] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[7] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[8] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[9] | Tian Zhang, Qingshan Huang, Shujun Geng, Aqiang Chen, Yan Liu, Haidong Zhang. Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 1-12. |
[10] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[11] | Feng Jiang, Xiao Li, Guopeng Qi, Xiulun Li. Effects of particle type on the particle fluidization and distribution in a liquid–solid circulating fluidized bed boiler [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 53-66. |
[12] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[13] | Jihui Li, Bingjian Zhang, Yidan Shu. Simulation of gas-solid adsorption process considering particle-size distribution [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 331-342. |
[14] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[15] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||