[1] D.W.T. Rippin, Simulation of single- and multiproduct batch chemical plants for optimal design and operation, Comput. Chem. Eng. 7 (3) (1983) 137-156. [2] Mujtaba I M. Batch distillation: Design and Operation, World Scientific Publishing Company, Singapore, 2004. [3] Hangos K, Cameron I. Process Modelling and Model Analysis, Acad Press, San Diego, 2001. [4] M.L. Thompson, M.A. Kramer, Modeling chemical processes using prior knowledge and neural networks, AlChE. J. 40 (8) (1994) 1328-1340. [5] H.I. Furlonge, C.C. Pantelides, E. Soerensen, Optimal operation of multivessel batch distillation columns, AlChE. J. 45 (4) (1999) 781-801. [6] U.M. Diwekar, K.P. Madhavan, Multicomponent batch distillation column design, Ind. Eng. Chem. Res. 30 (4) (1991) 713-721. [7] U.M. Diwekar, How simple can it be? -a look at the models for batch distillation, Comput. Chem. Eng. 18 (1994) S451-S457. [8] Meadows E L. Multicomponent batch-distillation calculations on a digital computer,Chem. Eng. Symp. Ser, 59(1963) 46-48. [9] G.P. Distefano, Mathematical modeling and numerical integration of multicomponent batch distillation equations, AlChE. J. 14 (1) (1968) 190-199. [10] Boston J F, Britt H I, Jirapongphan S, & Shah, V. B. An advanced system for the simulation of batch distillation operations[J]. Foundations of Computer-Aided Chemical Process Design, (2)(1981)203-237. [11] U. Diwekar, K.P. Madhavan, R.E. Swaney, Optimization of multicomponent batch distillation columns, Ind. Eng. Chem. Res. 28 (7) (1989) 1011-1017. [12] G.Q. Wu, W.T.G. Yion, K. Le Nguyen Quang Dang, Z. Wu, Physics-informed machine learning for MPC: Application to a batch crystallization process, Chem. Eng. Res. Des. 192 (2023) 556-569. [13] Y.Z. Zheng, Z. Wu, Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty, Ind. Eng. Chem. Res. 62 (6) (2023) 2804-2818. [14] Y.Z. Zheng, C. Hu, X.N. Wang, Z. Wu, Physics-informed recurrent neural network modeling for predictive control of nonlinear processes, J. Process. Contr. 128 (2023) 103005. [15] N. Sharma, Y.A. Liu, A hybrid science-guided machine learning approach for modeling chemical processes: A review, AlChE. J. 68 (5) (2022) e17609. [16] M. Agarwal, Combining neural and conventional paradigms for modelling, prediction and control, Int. J. Syst. Sci. 28 (1) (1997) 65-81. [17] H. Kwon, K.C. Oh, Y. Choi, Y.G. Chung, J. Kim, Development and application of machine learning-based prediction model for distillation column, Int. J. Intell. Syst. 36 (5) (2021) 1970-1997. [18] M.S.F. Bangi, J.S.I. Kwon, Deep hybrid modeling of chemical process: Application to hydraulic fracturing, Comput. Chem. Eng. 134 (2020) 106696. [19] V. Mahalec, Y. Sanchez, Inferential monitoring and optimization of crude separation units via hybrid models, Comput. Chem. Eng. 45 (2012) 15-26. [20] I.M. Mujtaba, M.A. Hussain, Optimal operation of dynamic processes under process-model mismatches: Application to batch distillation, Comput. Chem. Eng. 22 (1998) S621-S624. [21] Mujtaba I M, Macchietto S. Holdup issues in batch distillation-binary mixtures[J]. Chem. Eng. Sci. 1998, 53(14): 2519-2530. [22] Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis[J]. AIChE J, 40(8) (1994) 1361-1375. [23] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, (2014): 1412.3555. [24] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, (2014): 1412.6980. [25] W.H. Wang, N. Yang, F.R. Wei, B.B. Chang, M. Zhou, Gated Self-Matching Networks for Reading Comprehension and Question AnsweringProceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada. Stroudsburg, PA, USA: Association for Computational Linguistics, (2017): 189-198. |