[1] T.C. Phiri, P. Singh, A.N. Nikoloski, The potential for copper slag waste as a resource for a circular economy: a review-Part I, Miner. Eng. 180 (2022) 107474. [2] X.Y. Guo, Y.L. Chen, Q.M. Wang, S.S. Wang, Q.H. Tian, Copper and arsenic substance flow analysis of pyrometallurgical process for copper production, Trans. Nonferrous Met. Soc. China 32 (1) (2022) 364-376. [3] G.C. Shi, Y.L. Liao, B.W. Su, Y. Zhang, W. Wang, J.J. Xi, Kinetics of copper extraction from copper smelting slag by pressure oxidative leaching with sulfuric acid, Sep. Purif. Technol. 241 (2020) 116699. [4] W.T. Zhou, X. Liu, X.J. Lyu, W.H. Gao, H.L. Su, C.M. Li, Extraction and separation of copper and iron from copper smelting slag: a review, J. Clean. Prod. 368 (2022) 133095. [5] Z.B. Wang, W.B. Xu, Y.P. Li, Z.W. Zhao, F.H. Jie, G.S. Zeng, J. Lei, H. Liu, Y.Y. Wang, Diffusion behaviors and mechanism of copper-containing sulfide in fayalite-type slag: a key step of achieving copper slag depletion, Colloids Surf. A Physicochem. Eng. Aspects 638 (2022) 128264. [6] Z.W. Wang, J.T. Gao, X. Lan, G.L. Feng, Z.C. Guo, A new method for continuous recovery of fine copper droplets from copper matte smelting slag via super-gravity, Resour. Conserv. Recycl. 182 (2022) 106316. [7] L. Xu, D.Y. Zhang, Y. Liu, M. Chen, Iron recovery from waste copper slag by using coal and secondary aluminum dross as co-reductants, JOM 74 (5) (2022) 2029-2036. [8] H. Arslanoglu, H.S. Altundogan, F. Tumen, Extraction of copper, cobalt and nickel by leaching of iron (III) sulfate from copper slags, Trans. Indian Inst. Met. 75 (7) (2022) 1759-1766. [9] W.J. Duan, D.G. Wang, Z.M. Wang, Q.B. Yu, Hydrometallurgical leaching behavior and kinetic modeling of blast furnace slag in hydrochloric acid, J. Sustain. Metall. 8 (1) (2022) 170-185. [10] Z.H. Guo, F.K. Pan, X.Y. Xiao, L. Zhang, K.Q. Jiang, Optimization of brine leaching of metals from hydrometallurgical residue, Trans. Nonferrous Met. Soc. China 20 (10) (2010) 2000-2005. [11] S. Anand, K. Sarveswara Rao, P.K. Jena, Pressure leaching of copper converter slag using dilute sulphuric acid for the extraction of cobalt, nickel and copper values, Hydrometallurgy 10 (3) (1983) 305-312. [12] A.V. Bese, Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching, Ultrason. Sonochem. 14 (6) (2007) 790-796. [13] M.K. Khalid, J. Hamuyuni, V. Agarwal, J. Pihlasalo, M. Haapalainen, M. Lundstrom, Sulfuric acid leaching for capturing value from copper rich converter slag, J. Clean. Prod. 215 (2019) 1005-1013. [14] S. Maryam Sadeghi, G. Vanpeteghem, I.F.F. Neto, H.M.V.M. Soares, Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches, Waste Manag. 60 (2017) 696-705. [15] G.C. Tian, J. Li, Y.X. Hua, Application of ionic liquids in hydrometallurgy of nonferrous metals, Trans. Nonferrous Met. Soc. China 20 (3) (2010) 513-520. [16] L. Xiao, Y.L. Wang, Y. Yu, G.Y. Fu, P.W. Han, Z.H.I. Sun, S.F. Ye, An environmentally friendly process to selectively recover silver from copper anode slime, J. Clean. Prod. 187 (2018) 708-716. [17] N. Marinkov, M. Markova-Velichkova, S. Gyurov, Y. Kostova, I. Spassova, D. Rabadjieva, D. Kovacheva, I. Penkov, C. Tzvetkova, G. Gentscheva, Preparation and characterization of silicagel from silicate solution obtained by autoclave treatment of copper slag, J. Sol Gel Sci. Technol. 87 (2) (2018) 331-339. [18] S.N. Ni, J. Su, H.P. Zhang, Z.Y. Zeng, H.L. Zhi, X.Q. Sun, A cleaner strategy for comprehensive recovery of waste SmCo magnets based on deep eutectic solvents, Chem. Eng. J. 412 (2021) 128602. [19] C. Padwal, H. Pham, S. Jadhav, T. Do, J.Y. Nerkar, L. Hoang, A.K. Nanjundan, S. Mundree, D. Dubal, Deep eutectic solvents: green approach for cathode recycling of Li-ion batteries, Nat Energy 4(2021) 339. [20] Z.W. Yuan, H. Liu, W.F. Yong, Q.H. She, J. Esteban, Status and advances of deep eutectic solvents for metal separation and recovery, Green Chem. 24 (5) (2022) 1895-1929. [21] S.C. Cunha, J.O. Fernandes, Extraction techniques with deep eutectic solvents, Trac Trends Anal. Chem. 105 (2018) 225-239. [22] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev. 121 (3) (2021) 1232-1285. [23] B.K. Tang, K.H. Row, Recent developments in deep eutectic solvents in chemical sciences, Monatsh. Fur Chem. Chem. Mon. 144 (10) (2013) 1427-1454. [24] A. Entezari-Zarandi, F. Larachi, Selective dissolution of rare-earth element carbonates in deep eutectic solvents, J. Rare Earths 37 (5) (2019) 528-533. [25] C.Y. Liu, Q.B. Yan, X.W. Zhang, L.C. Lei, C.L. Xiao, Efficient recovery of end-of-life NdFeB permanent magnets by selective leaching with deep eutectic solvents, Environ. Sci. Technol. 54 (16) (2020) 10370-10379. [26] N. Peeters, K. Binnemans, S. Riano, Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents, Green Chem. 22 (13) (2020) 4210-4221. [27] A.P. Abbott, J. Collins, I. Dalrymple, R.C. Harris, R. Mistry, F.L. Qiu, J. Scheirer, W.R. Wise, Processing of electric arc furnace dust using deep eutectic solvents, Aust. J. Chem. 62 (4) (2009) 341. [28] G.R.T. Jenkin, A.Z.M. Al-Bassam, R.C. Harris, A.P. Abbott, D.J. Smith, D.A. Holwell, R.J. Chapman, C.J. Stanley, The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals, Miner. Eng. 87 (2016) 18-24. [29] S. Riano, M. Petranikova, B. Onghena, T. Vander Hoogerstraete, D. Banerjee, M.R.S. Foreman, C. Ekberg, K. Binnemans, Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets, RSC Adv. 7 (51) (2017) 32100-32113. [30] X.L. Zhu, C.Y. Xu, J. Tang, Y.X. Hua, Q.B. Zhang, H. Liu, X. Wang, M.T. Huang, Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents, Trans. Nonferrous Met. Soc. China 29 (10) (2019) 2222-2228. [31] S.B. Wang, Z.T. Zhang, Z.G. Lu, Z.H. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chem. 22 (14) (2020) 4473-4482. [32] M.A. Topcu, A. Rusen, O. Kucuk, Treatment of copper converter slag with deep eutectic solvent as green chemical, Waste Manag. 132 (2021) 64-73. [33] Y. Chen, Y.L. Wang, Y. Bai, Y.T. Duan, B.L. Zhang, C. Liu, X.C. Sun, M.H. Feng, T.C. Mu, Significant improvement in dissolving lithium-ion battery cathodes using novel deep eutectic solvents at low temperature, ACS Sustainable Chem. Eng. 9 (38) (2021) 12940-12948. [34] M. Mozammel, A. Mohammadzadeh, The influence of pre-oxidation and leaching parameters on Iranian ilmenite concentrate leaching efficiency: Optimization and measurement, Measurement 66 (2015) 184-194. [35] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (1) (2003) 70-71. [36] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46-61. [37] A.A.Z. Diab, H.I. Abdul-Ghaffar, A.A. Ahmed, H.A. Ramadan, An effective model parameter estimation of PEMFCs using GWO algorithm and its variants, IET Renew. Power Gener. 16 (7) (2022) 1380-1400. [38] F. Chemat, H. Anjum, A.M. Shariff, P. Kumar, T. Murugesan, Thermal and physical properties of (Choline chloride+urea+ l-arginine) deep eutectic solvents, J. Mol. Liq. 218 (2016) 301-308. [39] D. Nguyen, T. Van Huynh, V.S. Nguyen, P.L. Doan Cao, H.T. Nguyen, T.C. Wei, P.H. Tran, P.T. Nguyen, Choline chloride-based deep eutectic solvents as effective electrolytes for dye-sensitized solar cells, RSC Adv. 11 (35) (2021) 21560-21566. [40] Z.Q. Guo, J. Pan, D.Q. Zhu, F. Zhang, Green and efficient utilization of waste ferric-oxide desulfurizer to clean waste copper slag by the smelting reduction-sulfurizing process, J. Clean. Prod. 199 (2018) 891-899. [41] Z.Q. Guo, J. Pan, D.Q. Zhu, C.C. Yang, Mechanism of composite additive in promoting reduction of copper slag to produce direct reduction iron for weathering resistant steel, Powder Technol. 329 (2018) 55-64. [42] A.H. Kaksonen, S. Sarkijarvi, E. Peuraniemi, S. Junnikkala, J.A. Puhakka, O.H. Tuovinen, Metal biorecovery in acid solutions from a copper smelter slag, Hydrometallurgy 168 (2017) 135-140. [43] A. Rusen, A. Geveci, Y.A. Topkaya, B. Derin, Investigation of effect of colemanite addition on copper losses in matte smelting slag, Can. Metall. Q. 51 (2) (2012) 157-169. [44] Z. Zulhan, I.M. Fauzian, T. Hidayat, Ferro-silico-manganese production from manganese ore and copper smelting slag, J. Mater. Res. Technol. 9 (6) (2020) 13625-13634. [45] R.K. Nadirov, L.I. Syzdykova, A.K. Zhussupova, M.T. Usserbaev, Recovery of value metals from copper smelter slag by ammonium chloride treatment, Int. J. Miner. Process. 124 (2013) 145-149. [46] M.D. Turan, Z.A. Sari, H. Nizamoglu, T. Ozcan, Dissolution behavior and kinetics of copper slag under oxidative conditions, Chem. Eng. Res. Des. 205 (2024) 324-334. [47] G. Bulut, K.T. Perek, A. Gul, F. Arslan, G. Onal, Recovery of metal values from copper slags by flotation and roasting with pyrite, Min. Metall. Explor. 24 (1) (2007) 13-18. [48] A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie, S.U. Obi, Solubility of metal oxides in deep eutectic solvents based on choline chloride, J. Chem. Eng. Data 51 (4) (2006) 1280-1282. [49] A. Bakkar, Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning, J. Hazard. Mater. 280 (2014) 191-199. [50] A. Bakhtyari, R. Haghbakhsh, A.R.C. Duarte, S. Raeissi, A simple model for the viscosities of deep eutectic solvents, Fluid Phase Equilib. 521 (2020) 112662. [51] F.S. Mjalli, J. Naser, Viscosity model for choline chloride-based deep eutectic solvents, Asia Pac. J. Chem. Eng. 10 (2) (2015) 273-281. [52] A. Jarosikova, V. Ettler, M. Mihaljevic, B. Kribek, B. Mapani, The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications, J. Environ. Manage. 187 (2017) 178-186. [53] Y. Zhang, R.L. Man, W.D. Ni, H. Wang, Selective leaching of base metals from copper smelter slag, Hydrometallurgy 103 (1-4) (2010) 25-29. [54] X.L. Xie, X.L. Zou, X.G. Lu, K. Zheng, H.W. Cheng, Q. Xu, Z.F. Zhou, Voltammetric study and electrodeposition of Cu from CuO in deep eutectic solvents, J. Electrochem. Soc. 163 (9) (2016) D537-D543. [55] M. Lenglet, Iono-covalent character of the metal-oxygen bonds in oxides: a comparison of experimental and theoretical data, Act. Passive Electron. Compon. 27 (1) (2004) 1-60. [56] A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (29) (2004) 9142-9147. [57] M.A. Topcu, A. Rusen, Investigation of use of deep eutectic solvent on copper recovery from copper anode slag, J. ESOGU Eng. Arc. Fac. 28 (2020) 308-320. |