Chinese Journal of Chemical Engineering ›› 2025, Vol. 78 ›› Issue (2): 263-272.DOI: 10.1016/j.cjche.2024.10.029
Previous Articles Next Articles
Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li
Received:
2024-08-02
Revised:
2024-09-17
Accepted:
2024-10-08
Online:
2024-12-28
Published:
2025-02-08
Supported by:
Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li
通讯作者:
Jinhang Dai,E-mail:jinhangdai@ctbu.edu.cn;Fukun Li,E-mail:lfkok@ctbu.edu.cn
基金资助:
Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li. 3-Acetamido-5-acetylfuran: An emerging renewable nitrogen-containing platform compound[J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 263-272.
Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li. 3-Acetamido-5-acetylfuran: An emerging renewable nitrogen-containing platform compound[J]. 中国化学工程学报, 2025, 78(2): 263-272.
[1] J.H. Dai, Synthesis of 2, 5-diformylfuran from renewable carbohydrates and its applications: a review, Green Energy Environ. 6 (1) (2021) 22-32. [2] W.J. Zhang, H.L. Qian, Q.D. Hou, M.T. Ju, The functional and synergetic optimization of the thermal-catalytic system for the selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran: a review, Green Chem. 25 (3) (2023) 893-914. [3] H.J. Zang, Z.P. Liu, C.C. Wu, Y.L. Chang, X.L. Zhu, X. Zhu, M. Yan, Valorization of chitin derived N-acetyl-D-glucosamine into N-containing chemical 3-acetamido-5-acetylfuran by a facile, efficient and low cost composite additive, Sustain. Chem. Pharm. 37 (2024) 101388. [4] Z.T. Du, D.L. Yang, Q.Y. Cao, J.H. Dai, R.H. Yang, X.X. Gu, F.K. Li, Recent advances in catalytic synthesis of 2, 5-furandimethanol from 5-hydroxymethylfurfural and carbohydrates, Bioresour. Bioprocess. 10 (1) (2023) 52. [5] Z.T. Du, J.H. Dai, Q.Y. Cao, R.H. Yang, D.L. Yang, J.L. Li, F.K. Li, X.X. Gu, Conversion of 5-hydroxymethylfurfural and carbohydrates to 5-ethoxymethylfurfural over chitin-derived solid acid catalysts, Mol. Catal. 559 (2024) 114112. [6] Z.J. Huang, Y. Liu, L.G. Chen, X.H. Zhang, J.G. Liu, C.G. Wang, Q. Zhang, L.L. Ma, Selective hydrodeoxygenation of 5-hydromethylfurfural to 2, 5-dimethylfuran over PtFe/C catalyst, Mol. Catal. 561 (2024) 114169. [7] Q. Deng, X. Hou, Y. Zhong, J. Zhu, J. Wang, J. Cai, Z. Zeng, J.J. Zou, S. Deng, T. Yoskamtorn, S.C.E. Tsang, 2D MOF with compact catalytic sites for the one-pot synthesis of 2, 5-dimethylfuran from saccharides via tandem catalysis, Angew. Chem. Int. Ed 61 (34) (2022) e202205453. [8] N. Yan, X. Chen, Sustainability: Don’t waste seafood waste, Nature 524 (7564) (2015) 155-157. [9] X. Chen, H.Y. Yang, N. Yan, Shell biorefinery: dream or reality? Chemistry 22 (38) (2016) 13402-13421. [10] J.H. Dai, F.K. Li, X. Fu, Towards shell biorefinery: advances in chemical-catalytic conversion of chitin biomass to organonitrogen chemicals, ChemSusChem 13 (24) (2020) 6498-6508. [11] X. Chen, S. Song, H.Y. Li, G. Gozaydin, N. Yan, Expanding the boundary of biorefinery: organonitrogen chemicals from biomass, Acc. Chem. Res. 54 (7) (2021) 1711-1722. [12] L. Lu, X.L. Ji, X.W. Wang, F.M. Jin, X. Chen, Catalytic conversion of chitin biomass to 5-hydroxymethylfurfural in lithium bromide molten salt hydrates, Ind. Eng. Chem. Res. 62 (28) (2023) 11248-11257. [13] J.G. Zhang, N. Yan, Production of glucosamine from chitin by co-solvent promoted hydrolysis and deacetylation, ChemCatChem 9 (14) (2017) 2790-2796. [14] G. Gozaydin, S. Song, N. Yan, Chitin hydrolysis in acidified molten salt hydrates, Green Chem. 22 (15) (2020) 5096-5104. [15] G. Gozaydin, Q.M. Sun, M. Oh, S. Lee, M. Choi, Y. Liu, N. Yan, Chitin hydrolysis using zeolites in lithium bromide molten salt hydrate, ACS Sustainable Chem. Eng. 11 (6) (2023) 2511-2519. [16] F.D. Bobbink, J.G. Zhang, Y. Pierson, X. Chen, N. Yan, Conversion of chitin derived N-acetyl-d-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water, Green Chem. 17 (2) (2015) 1024-1031. [17] H. Kobayashi, K. Techikawara, A. Fukuoka, Hydrolytic hydrogenation of chitin to amino sugar alcohol, Green Chem. 19 (14) (2017) 3350-3356. [18] Y. Ohmi, S. Nishimura, K. Ebitani, Synthesis of α-amino acids from glucosamine-HCl and its derivatives by aerobic oxidation in water catalyzed by Au nanoparticles on basic supports, ChemSusChem 6 (12) (2013) 2259-2262. [19] K. Techikawara, H. Kobayashi, A. Fukuoka, Conversion of N-acetylglucosamine to protected amino acid over Ru/C catalyst, ACS Sustainable Chem. Eng. 6 (9) (2018) 12411-12418. [20] J.H. Dai, G. Gozaydin, C.W. Hu, N. Yan, Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation, ACS Sustainable Chem. Eng. (2019) acssuschemeng.9b01912. [21] J.H. Dai, Q.Y. Cao, Z.T. Du, R.H. Yang, D.L. Yang, F.K. Li, X.X. Gu, Facile synthesis of N-acetylglycine from chitin-derived N-acetylmonoethanolamine, Catal. Commun. 185 (2023) 106812. [22] R.F.A. Gomes, B.M.F. Goncalves, K.H.S. Andrade, B.B. Sousa, N. Maulide, G.J.L. Bernardes, C.A.M. Afonso, Unlocking the potential of bio-based nitrogen-rich furanic platforms as biomass synthons, Angew. Chem. Int. Ed. 62 (28) (2023) e202304449. [23] C.Q. Lin, H. Yang, X. Gao, Y. Zhuang, C.J. Feng, H.L. Wu, H.F. Gan, F. Cao, P. Wei, P.K. Ouyang, Biomass to aromatic amine module: alkali catalytic conversion of N-acetylglucosamine into unsubstituted 3-acetamidofuran by retro-aldol condensation, ChemSusChem 16 (12) (2023) e202300133. [24] L. Korampattu, N. Ghosh, P.L. Dhepe, Shell waste valorization to chemicals: methods and progress, Green Chem. 26 (10) (2024) 5601-5634. [25] H. Kobayashi, T. Sagawa, A. Fukuoka, Catalytic conversion of chitin as a nitrogen-containing biomass, Chem. Commun. 59 (42) (2023) 6301-6313. [26] X.Y. Shi, X. Ye, H. Zhong, T.F. Wang, F.M. Jin, Sustainable nitrogen-containing chemicals and materials from natural marine resources chitin and microalgae, Mol. Catal. 505 (2021) 111517. [27] R.A. Franich, S.J. Goodin, A.L. Wilkins, Acetamidofurans, acetamidopyrones, and acetamidoacetaldehyde from pyrolysis of chitin and n-acetylglucosamine, J. Anal. Appl. Pyrolysis 7 (1-2) (1984) 91-100. [28] J.H. Chen, M.F. Wang, C.T. Ho, Volatile compounds generated from thermal degradation of N-acetylglucosamine, J. Agric. Food Chem. 46 (8) (1998) 3207-3209. [29] K.W. Omari, L. Dodot, F.M. Kerton, A simple one-pot dehydration process to convert N-acetyl-D-glucosamine into a nitrogen-containing compound, 3-acetamido-5-acetylfuran, ChemSusChem 5 (9) (2012) 1767-1772. [30] H.J. Zang, Y.M. Feng, M.C. Zhang, K. Wang, Y.N. Du, Y.X. Lv, Z.X. Qin, Y.F. Xiao, Valorization of chitin biomass into N-containing chemical 3-acetamido-5-acetylfuran catalyzed by simple Lewis acid, Carbohydr. Res. 522 (2022) 108679. [31] D. Padovan, H. Kobayashi, A. Fukuoka, Facile preparation of 3-acetamido-5-acetylfuran from N-acetyl-d-glucosamine by using commercially available aluminum salts, ChemSusChem 13 (14) (2020) 3594-3598. [32] D. Chengyong Wang, D. Chaoqiang Wu, P. Alei Zhang, P. Kequan Chen, P. Fei Cao, P. Pingkai Ouyang, Conversion of N-acetyl-D-glucosamine into 3-acetamido-5-acetylfuran using cheap ammonium chloride as catalyst, ChemistrySelect 7 (15) (2022) e202104574. [33] H.J. Zang, J. Lou, S.L. Jiao, H.X. Li, Y.N. Du, J. Wang, Valorization of chitin derived N-acetyl-D-glucosamine into high valuable N-containing 3-acetamido-5-acetylfuran using pyridinium-based ionic liquids, J. Mol. Liq. 330 (2021) 115667. [34] H.J. Zang, Y.M. Feng, J. Lou, K. Wang, C.C. Wu, Z.P. Liu, X. Zhu, Synthesis and performance of piperidinium-based ionic liquids as catalyst for biomass conversion into 3-acetamido-5-acetylfuran, J. Mol. Liq. 366 (2022) 120281. [35] H.J. Zang, H.X. Li, S.L. Jiao, J. Lou, Y.N. Du, N.L. Huang, Green conversion of N-acetylglucosamine into valuable platform compound 3-acetamido-5-acetylfuran using ethanolamine ionic liquids as recyclable catalyst, ChemistrySelect 6 (16) (2021) 3848-3857. [36] Z.H. Guo, C.Y. Chen, J.C. Zhao, X.Y. Guo, L.Y. Jia, P.F. Liu, C. Marcus Pedersen, X.L. Hou, Y. Qiao, Y.X. Wang, Mechanism of the dehydration of N-acetyl-d-glucosamine into N-containing platform molecule 3-acetamido-5-acetylfuran: NMR study, J. Mol. Liq. 365 (2022) 120219. [37] J. Wang, H.J. Zang, S.L. Jiao, K. Wang, Z. Shang, H.X. Li, J. Lou, Efficient conversion of N-acetyl-D-glucosamine into nitrogen-containing compound 3-acetamido-5-acetylfuran using amino acid ionic liquid as the recyclable catalyst, Sci. Total Environ. 710 (2020) 136293. [38] C.Q. Wu, C.Y. Wang, A.L. Zhang, K.Q. Chen, F. Cao, P.K. Ouyang, Preparation of 3-aceta mido-5-acetylfuran from N-acetylglucosamine and chitin using biobased deep eutectic solvents as catalysts, React. Chem. Eng. 7 (8) (2022) 1742-1749. [39] X.L. Ji, J. Kou, G. Gozaydin, X. Chen, Boosting 3-acetamido-5-acetylfuran production from N-acetyl-D-glucosamine in γ-valerolactone by a dissolution-dehydration effect, Appl. Catal. B Environ. 342 (2024) 123379. [40] K. Yamazaki, N. Hiyoshi, A. Yamaguchi, Conversion of N-acetylglucosamine to 3-acetamido-5-acetylfuran over Al-exchanged montmorillonite, ChemistryOpen 12 (12) (2023) e202300148. [41] S.S. Shaikh, C.R. Patil, N. Lucas, V.V. Bokade, C.V. Rode, Direct conversion of N-acetyl-d-glucosamine to N-containing heterocyclic compounds 3-acetamidofuran and 3-acetamido-5-acetyl furan, Waste Biomass Valorization 14 (12) (2023) 4201-4214. [42] M.W. Drover, K.W. Omari, J.N. Murphy, F.M. Kerton, Formation of a renewable amide, 3-acetamido-5-acetylfuran, via direct conversion of N-acetyl-d-glucosamine, RSC Adv. 2 (11) (2012) 4642-4644. [43] H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural, Science 316 (5831) (2007) 1597-1600. [44] X. Chen, S.L. Chew, F.M. Kerton, N. Yan, Direct conversion of chitin into a N-containing furan derivative, Green Chem. 16 (4) (2014) 2204-2212. [45] X. Chen, Y. Liu, F.M. Kerton, N. Yan, Conversion of chitin and N-acetyl-d-glucosamine into a N-containing furan derivative in ionic liquids, RSC Adv. 5 (26) (2015) 20073-20080. [46] X. Chen, Y.J. Gao, L. Wang, H.Z. Chen, N. Yan, Effect of treatment methods on chitin structure and its transformation into nitrogen-containing chemicals, Chempluschem 80 (10) (2015) 1565-1572. [47] K.Q. Chen, C.Q. Wu, C.Y. Wang, A.L. Zhang, F. Cao, P.K. Ouyang, Chemo-enzymatic protocol converts chitin into a nitrogen-containing furan derivative, 3-acetamido-5-acetylfuran, Mol. Catal. 516 (2021) 112001. [48] Y. Liu, C.N. Rowley, F.M. Kerton, Combined experimental and computational studies on the physical and chemical properties of the renewable amide, 3-acetamido-5-acetylfuran, Chemphyschem 15 (18) (2014) 4087-4094. [49] Y. Liu, C. Stahler, J.N. Murphy, B.J. Furlong, F.M. Kerton, Formation of a renewable amine and an alcohol via transformations of 3-acetamido-5-acetylfuran, ACS Sustainable Chem. Eng. 5 (6) (2017) 4916-4922. [50] T.T. Pham, A.C. Lindsay, S.W. Kim, L. Persello, X. Chen, N. Yan, J. Sperry, Two-step preparation of diverse 3-amidofurans from chitin, ChemistrySelect 4 (34) (2019) 10097-10099. [51] Z.E. Clarke, P.T. Maragh, T.P. Dasgupta, D.G. Gusev, A.J. Lough, K. Abdur-Rashid, A family of active iridium catalysts for transfer hydrogenation of ketones, Organometallics 25 (17) (2006) 4113-4117. [52] T.T. Pham, G. Gozaydin, T. Sohnel, N. Yan, J. Sperry, Oxidative ring-expansion of a chitin-derived platform enables access to unexplored 2-amino sugar chemical space, Eur. J. Org. Chem. 2019 (6) (2019) 1355-1360. [53] Y.C. Hao, M.H. Zong, Z.L. Wang, N. Li, Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine, Bioresour. Bioprocess. 8 (1) (2021) 80. [54] Y.C. Hao, M.H. Zong, Q. Chen, N. Li, Engineering carbonyl reductase for one-pot chemobiocatalytic enantioselective synthesis of a value-added N-containing chiral alcohol from N-acetyl-d-glucosamine, Green Chem. 25 (13) (2023) 5051-5058. [55] C.Q. Wu, X. Zhang, W. Liu, C.Y. Wang, Q.Q. Jiang, F.F. Chen, Q.Z. Liu, F. Cao, G.W. Zheng, A.L. Zhang, K.Q. Chen, Biocatalytic synthesis of two furan-based amino compounds 2-acetyl-4-aminofuran and 3-acetylamino-5-(α-aminoethyl)-furan from chitin resources, ACS Sustainable Chem. Eng. 12 (30) (2024) 11145-11154. [56] T.W. Doyle, D.E. Nettleton, R.E. Grulich, D.M. Balitz, D.L. Johnson, A.L. Vulcano, Antitumor agents from the bohemic acid complex. 4. Structures of rudolphomycin, mimimycin, collinemycin, and alcindoromycin, J. Am. Chem. Soc. 101 (23) (1979) 7041-7049. [57] O. Johdo, T. Yoshioka, H. Naganawa, T. Takeuchi, A. Yoshimoto, New betaclamycin and aclarubicin analogs obtained by prolonged microbial conversion with an aclarubicin-negative mutant, J. Antibiot. 49 (7) (1996) 669-675. [58] K.A. Shaaban, T.A. Ahmed, M. Leggas, J. Rohr, Saquayamycins G-K, cytotoxic angucyclines from Streptomyces sp. Including two analogues bearing the aminosugar rednose, J. Nat. Prod. 75 (7) (2012) 1383-1392. [59] S.M. Salem, S. Weidenbach, J. Rohr, Two cooperative glycosyltransferases are responsible for the sugar diversity of saquayamycins isolated from streptomyces sp. KY 40-1, ACS Chem. Biol. 12 (10) (2017) 2529-2534. [60] J.G. Pereira, J.M.J.M. Ravasco, J.R. Vale, F. Queda, R.F.A. Gomes, A direct Diels-Alder reaction of chitin derived 3-acetamido-5-acetylfuran, Green Chem. 24 (18) (2022) 7131-7136. [61] T.T. Pham, X. Chen, N. Yan, J. Sperry, A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran, Monatsh. Fur Chem. Chem. Mon. 149 (4) (2018) 857-861. [62] K. Schneider, S. Keller, F.E. Wolter, L. Roglin, W. Beil, O. Seitz, G. Nicholson, C. Bruntner, J. Riedlinger, H.P. Fiedler, R.D. Sussmuth, Proximicins A, B, and C-antitumor furan analogues of netropsin from the marine actinomycete Verrucosispora induce upregulation of p53 and the cyclin kinase inhibitor p21, Angew. Chem. Int. Ed 47 (17) (2008) 3258-3261. [63] F.E. Wolter, K. Schneider, B.P. Davies, E.R. Socher, G. Nicholson, O. Seitz, R.D. Sussmuth, Total synthesis of proximicin A-C and synthesis of new furan-based DNA binding agents, Org. Lett. 11 (13) (2009) 2804-2807. [64] F. Brucoli, A. Natoli, P. Marimuthu, M.T. Borrello, P. Stapleton, S. Gibbons, A. Schatzlein, Efficient synthesis and biological evaluation of proximicins A, B and C, Bioorg. Med. Chem. 20 (6) (2012) 2019-2024. [65] A.D. Sadiq, X. Chen, N. Yan, J. Sperry, Towards the shell biorefinery: sustainable synthesis of the anticancer alkaloid proximicin A from chitin, ChemSusChem 11 (3) (2018) 532-535. |
[1] | Chen Liang, Weiqiang Chen, Linghong Yin, Xianli Wu, Jie Xu, Chunhua Du, Wangda Qu. Properties evolutions during carbonization of carbon foam using lignin as sole precursor [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 33-43. |
[2] | Zhiying Feng, Kaifeng Liu, Tao Zhu, Dongfang Li, Xing Zhu. CO2-gasification of corncob in a molten salt environment [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 58-66. |
[3] | Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 154-162. |
[4] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
[5] | Peng Jiang, Hao Zhang, Guanhan Zhao, Lin Li, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 231-240. |
[6] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
[7] | Yong-Yi Zeng, Xin-Yi Xu, Jin-Xuan Xie, Wen-Li Chen, Lan Liu, Xin-Jian Yin, Bi-Shuang Chen. Lipase and photodecarboxylase coexpression: A potential strategy for alkane-based biodiesel production from natural triglycerides [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 238-246. |
[8] | Sien Yan, Linhuo Gan, Kui Wang, Kang Sun. Cost-effective bifunctional lignin-derived carbon supported tin oxide with efficient production of 5-hydroxymethylfurfural from glucose [J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 154-164. |
[9] | Xin Wan, Hui Jiang, Zhen Ye, Hang Zhou, Yimin Ma, Xuanrui Miao, Xun He, Kequan Chen. Viscosity reduction of tapioca starch by incorporating with molasses hydrocolloids [J]. Chinese Journal of Chemical Engineering, 2023, 61(9): 165-172. |
[10] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[11] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[12] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[13] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[14] | Ahmed M. Elgarahy, M.G. Eloffy, Eric Guibal, Huda M. Alghamdi, Khalid Z. Elwakeel. Use of biopolymers in wastewater treatment: A brief review of current trends and prospects [J]. Chinese Journal of Chemical Engineering, 2023, 64(12): 292-320. |
[15] | Aaron Albert Aryee, Chenping Gao, Runping Han, Lingbo Qu. Synthesis of a novel magnetic biomass-MOF composite for the efficient removal of phosphates: Adsorption mechanism and characterization study [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 202-216. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 3
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||