[1] S. Sethupathy, G. Murillo Morales, L. Gao, H. Wang, B. Yang, J. Jiang, J. Sun, D. Zhu, Lignin valorization: Status, challenges and opportunities, Bioresour. Technol. 347 (2022) 126696. [2] A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G.A. Tuskan, C.E. Wyman, Lignin valorization: Improving lignin processing in the biorefinery, Science 344 (6185) (2014) 1246843. [3] T. Xu, H.S. Du, H.Y. Liu, W. Liu, X.Y. Zhang, C.L. Si, P.W. Liu, K. Zhang, Advanced nanocellulose-based composites for flexible functional energy storage devices, Adv. Mater. 33 (48) (2021) e2101368. [4] O. Yu, K.H. Kim, Lignin to materials: A focused review on recent novel lignin applications, Appl. Sci. 10 (13) (2020) 4626. [5] W. Li, C.Y. Li, Y. Xu, G.H. Wang, T. Xu, W.L. Zhang, C.L. Si, Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors, J. Colloid Interface Sci. 659 (2024) 374-384. [6] H. Zhou, L. Yan, D.X. Tang, T. Xu, L. Dai, C.Y. Li, W.S. Chen, C.L. Si, Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics, Adv. Mater. 36 (32) (2024) e2403876. [7] W. Li, W.H. Zhang, Y. Xu, G.H. Wang, T. Xu, S.X. Nie, C.L. Si, Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality, Nano Energy 128 (2024) 109912. [8] C. Liang, H.Y. Xia, L.H. Yin, C.H. Du, X.L. Wu, J. Wang, S.S. Li, J. Xu, X.X. Zhang, Y.Q. Wang, W.D. Qu, Carbon foam directly synthesized from industrial lignin powder as featured material for high efficiency solar evaporation, Chem. Eng. J. 481 (2024) 148375. [9] H.G. Liu, S.Q. Wu, N. Tian, F.X. Yan, C.Y. You, Y. Yang, Carbon foams: 3D porous carbon materials holding immense potential, J. Mater. Chem. A 8 (45) (2020) 23699-23723. [10] T.Y. Guo, J.W. Zhu, X. Chen, M.D. Song, B.H. Zhang, Novel monolithic mesoporous foamed carbons prepared using micro-colloidal particles as templates, J. Non Cryst. Solids 353 (30-31) (2007) 2893-2899. [11] E. Rodriguez, R. Garcia, Low-cost hierarchical micro/macroporous carbon foams as efficient sorbents for CO2 capture, Fuel Process. Technol. 156 (2017) 235-245. [12] A. Sharma, A. Pandey, V.K. Patle, N. Sharma, H. Jain, A. Khare, N. Dwivedi, G. Gupta, D.P. Mondal, A.K. Srivastava, R. Kumar, Sustainable lightweight multifunctional carbon foams derived from coal tar pitch using urea as a pore-forming agent, J. Anal. Appl. Pyrolysis 174 (2023) 106145. [13] Y.X. Zhou, M.H. Liu, Y.C. Lv, H. Guo, Y.F. Liu, X.X. Ye, Y.Q. Shi, Research on fire retardant lignin phenolic carbon foam with preferable smoke suppression performance, Chem. Eng. Sci. 282 (2023) 119305. [14] J. Seo, H. Park, K. Shin, S.H. Baeck, Y. Rhym, S.E. Shim, Lignin-derived macroporous carbon foams prepared by using poly(methyl methacrylate) particles as the template, Carbon 76 (2014) 357-367. [15] M.A. Palazzolo, M.A. Dourges, A. Magueresse, P. Glouannec, L. Maheo, H. Deleuze, Preparation of lignosulfonate-based carbon foams by pyrolysis and their use in the microencapsulation of a phase change material, ACS Sustainable Chem. Eng. 6 (2) (2018) 2453-2461. [16] Q.G. Yan, R. Arango, J.H. Li, Z.Y. Cai, Fabrication and characterization of carbon foams using 100% Kraft lignin, Mater. Des. 201 (2021) 109460. [17] W.D. Qu, Z.Z. Zhao, C. Liang, P.Y. Hu, Z.Y. Ma, Simple, additive-free, extra pressure-free process to direct convert lignin into carbon foams, Int. J. Biol. Macromol. 209 (Pt A) (2022) 692-702. [18] L.H. Yin, Z.Z. Zhao, M. Han, W.D. Qu, Facile strategy for carbon foam fabrication with lignin as sole feedstock and its applications, Front. Chem. Sci. Eng. 17 (8) (2023) 1051-1064. [19] Z.H. Qin, P. Chang, L.L. Ma, L.H. Bu, Z.L. Song, Preparation and modulation of a novel thin-walled carbon foam, Int. J. Min. Sci. Technol. 29 (2) (2019) 281-287. [20] K. Wang, Y.F. Li, K. Zhang, H.Y. Liu, B. Luo, Q.L. Lin, Preparation of near net-shape carbon foams from allyl COPNA-modified bismaleimide resin: Structures and properties, J. Anal. Appl. Pyrolysis 117 (2016) 125-131. [21] R.J. Fan, N.B. Zheng, Z.Q. Sun, Enhanced photothermal conversion capability of melamine foam-derived carbon foam-based form-stable phase change composites, Energy Convers. Manag. 263 (2022) 115693. [22] C. Liang, H.Y. Xia, L.H. Yin, C.H. Du, X.L. Wu, J. Wang, S.S. Li, J. Xu, X.J. Teng, W.D. Qu, Facile fabrication of three-dimensional carbon foam from fractionated corncob lignin, Ind. Crops Prod. 193 (2023) 116160. [23] J. Li, X.W. Bai, Y. Fang, Y.Q. Chen, X.H. Wang, H.P. Chen, H.P. Yang, Comprehensive mechanism of initial stage for lignin pyrolysis, Combust. Flame 215 (2020) 1-9. [24] C.P. Li, Y.Q. Wu, J.J. An, L.X. Gao, D.Q. Zhang, J. Li, Z.X. An, Preparation of carbon foam from depolymerization-reforming lignin for capacitive deionization, Desalination 559 (2023) 116656. [25] B. Shrestha, Y. le Brech, T. Ghislain, S. Leclerc, V. Carre, F. Aubriet, S. Hoppe, P. Marchal, S. Pontvianne, N. Brosse, A. Dufour, A multitechnique characterization of lignin softening and pyrolysis, ACS Sustainable Chem. Eng. 5 (8) (2017) 6940-6949. [26] P.S. Madamba, Physical changes in bamboo (Bambusa phyllostachys) shoot during hot air drying: Shrinkage, density, and porosity, Dry. Technol. 21 (3) (2003) 555-568. [27] C. Chen, E.B. Kennel, A.H. Stiller, P.G. Stansberry, J.W. Zondlo, Carbon foam derived from various precursors, Carbon 44 (8) (2006) 1535-1543. [28] L.E. Hessler, R.E. Power, The use of iodine adsorption as a measure of cellulose fiber crystallinity, Text. Res. J. 24 (9) (1954) 822-827. [29] H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (12-13) (2007) 1781-1788. [30] L. Wu, J.Z. Ni, H.Y. Zhang, S.H. Yu, R. Wei, W. Qian, W.F. Chen, Z.C. Qi, The composition, energy, and carbon stability characteristics of biochars derived from thermo-conversion of biomass in air-limitation, CO2, and N2 at different temperatures, Waste Manag. 141 (2022) 136-146. [31] H. Kawamoto, S. Horigoshi, S. Saka, Effects of side-chain hydroxyl groups on pyrolytic β-ether cleavage of phenolic lignin model dimer, J. Wood Sci. 53 (3) (2007) 268-271. [32] Z.Y. Sui, Q.H. Meng, X.T. Zhang, R. Ma, B. Cao, Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification, J. Mater. Chem. 22 (18) (2012) 8767-8771. [33] D. Baran, M.F. Yardim, H. Atakul, E. Ekinci, Synthesis of carbon foam with high compressive strength from an asphaltene pitch, New Carbon Mater. 28 (2) (2013) 127-132. [34] Y.Z. Wang, M.H. Li, Z.N. Zhao, G.Z. Xu, Y.Y. Ge, S.D. Wang, J.F. Bai, Preliminary exploration of the mechanism governing the cell structure variation of mesophase coal pitch/carbon black composite carbon foam, Diam. Relat. Mater. 136 (2023) 110077. [35] H.M. Yu, Z. Zhang, Z.S. Li, D.Z. Chen, Characteristics of tar formation during cellulose, hemicellulose and lignin gasification, Fuel 118 (2014) 250-256. [36] J. Ma, J. Li, P.L. Guo, S.Y. Pang, C.L. Hu, R.D. Zhao, S.F. Tang, H.M. Cheng, Tailoring microstructures of carbon fiber reinforced carbon aerogel-like matrix composites by carbonization to modulate their mechanical properties and thermal conductivities, Carbon 196 (2022) 807-818. [37] M. Inagaki, Pores in carbon materials-importance of their control, New Carbon Mater. 24 (3) (2009) 193-232. |