[1] J.K. Dong, B. Wang, X.J. Wang, C.X. Cao, S.K. Chen, W.L. Du, Optimization of sensor deployment sequences for hazardous gas leakage monitoring and source term estimation, Chin. J. Chem. Eng. 56 (2023) 169-179. [2] J.J. Luo, Z.H. Jin, H.P. Jin, Q. Li, X. Ji, Y.Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [3] K. Cen, T. Yao, Q.S. Wang, S.Y. Xiong, A risk-based methodology for the optimal placement of hazardous gas detectors, Chin. J. Chem. Eng. 26 (5) (2018) 1078-1086. [4] X.Y. Han, J.X. Zhu, H.S. Li, W. Xu, J.J. Feng, L. Hao, H.Y. Wei, Deep learning-based dispersion prediction model for hazardous chemical leaks using transfer learning, Process. Saf. Environ. Prot. 188 (2024) 363-373. [5] A. Franks, S. Parkar, C.R. Hansen, Use of quantitative risk assessment to enhance the safety of ships using ammonia as fuel, J. Saf. Sustain. 1 (3) (2024) 127-140. [6] X.W. Zhen, Y.N. Ning, W.J. Du, Y. Huang, J.E. Vinnem, An interpretable and augmented machine-learning approach for causation analysis of major accident risk indicators in the offshore petroleum industry, Process. Saf. Environ. Prot. 173 (2023) 922-933. [7] X.C. Xie, G. Fu, S.F. Shen, X.M. Shu, J. Li, L.D. Huang, N. Wei, Accident case data-accident causation model driven safety training method: Targeted safety training empowered by historical accident data in coal industry, Process. Saf. Environ. Prot. 182 (2024) 1208-1226. [8] H. Si, H. Ji, X.H. Zeng, Quantitative risk assessment model of hazardous chemicals leakage and application, Saf. Sci. 50 (7) (2012) 1452-1461. [9] Y. Liu, L.S. Fan, X. Li, S.L. Shi, Y. Lu, Trends of hazardous material accidents (HMAs) during highway transportation from 2013 to 2018 in China, J. Loss Prev. Process. Ind. 66 (2020) 104150. [10] E. Shin, S. Yoo, Y. Ju, D. Shin, Knowledge graph embedding and reasoning for real-time analytics support of chemical diagnosis from exposure symptoms, Process. Saf. Environ. Prot. 157 (2022) 92-105. [11] H.X. Meng, M.Q. Hu, Z.Y. Kong, Y.M. Niu, J.L. Liang, Z.Y. Nie, J.D. Xing, Risk analysis of lithium-ion battery accidents based on physics-informed data-driven Bayesian networks, Reliab. Eng. Syst. Saf. 251 (2024) 110294. [12] X. Liu, C. Wang, Z.M. Yin, X. An, H.X. Meng, Risk-informed multi-objective decision-making of emergency schemes optimization, Reliab. Eng. Syst. Saf. 245 (2024) 109979. [13] N. Balasubramanian, C.T. Chang, Y.F. Wang, Petri-net models for risk analysis of hazardous liquid loading operations, Ind. Eng. Chem. Res. 41 (19) (2002) 4823-4836. [14] Q.L. Chen, M. Wood, J.S. Zhao, Case study of the Tianjin accident: application of barrier and systems analysis to understand challenges to industry loss prevention in emerging economies, Process. Saf. Environ. Prot. 131 (2019) 178-188. [15] E. Zarei, K. Gholamizadeh, F. Khan, N. Khakzad, A dynamic domino effect risk analysis model for rail transport of hazardous material, J. Loss Prev. Process. Ind. 74 (2022) 104666. [16] X. Li, C. Chen, Y.D. Hong, F.Q. Yang, Exploring hazardous chemical explosion accidents with association rules and Bayesian networks, Reliab. Eng. Syst. Saf. 233 (2023) 109099. [17] Q.S. Jia, G. Fu, X.C. Xie, Y. Xue, S.H. Hu, Enhancing accident cause analysis through text classification and accident causation theory: a case study of coal mine gas explosion accidents, Process. Saf. Environ. Prot. 185 (2024) 989-1002. [18] W. Jiang, W. Han, J.K. Zhou, Z.S. Huang, Analysis of human factors relationship in hazardous chemical storage accidents, Int. J. Environ. Res. Public Health 17 (17) (2020) 6217. [19] G. Fu, X.C. Xie, Q.S. Jia, Z.H. Li, P. Chen, Y. Ge, The development history of accident causation models in the past 100 years: 24Model, a more modern accident causation model, Process. Saf. Environ. Prot. 134 (2020) 47-82. [20] J. Ge, Y.Y. Zhang, K.L. Xu, J.S. Li, X.W. Yao, C.Y. Wu, S.Y. Li, F. Yan, J.J. Zhang, Q.W. Xu, A new accident causation theory based on systems thinking and its systemic accident analysis method of work systems, Process. Saf. Environ. Prot. 158 (2022) 644-660. [21] N.G. Leveson, Engineering A Safer World: Systems Thinking Applied to Safety. MIT Press, Cambridge, Mass. 2011. [22] B.O. Ceylan, E. Akyuz, O. Arslan, Systems-Theoretic Accident Model and Processes (STAMP) approach to analyse socio-technical systems of ship allision in narrow waters, Ocean. Eng. 239 (2021) 109804. [23] Y.Y. Zhang, C. Sun, W. Shan, J.Q. Cai, L.L. Jing, W. Shao, Systems approach for the safety and security of hazardous chemicals, Marit Policy Manag. 47 (4) (2020) 500-522. [24] H.X. Meng, X. An, D.W. Li, S.J. Zhao, E. Zio, X. Liu, J.D. Xing, A STAMP-Game model for accident analysis in oil and gas industry, Petrol. Sci. 21 (3) (2024) 2154-2167. [25] D. Smith, B. Veitch, F. Khan, R. Taylor, Understanding industrial safety: Comparing Fault tree, Bayesian network, and FRAM approaches, J. Loss Prev. Process. Ind. 45 (2017) 88-101. [26] Y.L. Guo, Y.X. Jin, S.P. Hu, Z.L. Yang, Y.T. Xi, B. Han, Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN, Reliab. Eng. Syst. Saf. 229 (2023) 108850. [27] M.X. Yu, N. Quddus, C. Kravaris, M.S. Mannan, Development of a FRAM-based framework to identify hazards in a complex system, J. Loss Prev. Process. Ind. 63 (2020) 103994. [28] E. Salihoglu, E. Bal Besikci, The use of Functional Resonance Analysis Method (FRAM) in a maritime accident: a case study of Prestige, Ocean. Eng. 219 (2021) 108223. [29] M. Yang, System safety assessment using safety entropy, J. Loss Prev. Process. Ind. 66 (2020) 104174. [30] J.B. Yang, Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties, Eur. J. Oper. Res. 131 (1) (2001) 31-61. [31] J. Jiang, X. Li, L. N. Xing, Y. W. Chen, System risk analysis and evaluation approach based on fuzzy evidential reasoning, Systems Engineering - Theory & Practice, 33(02) (2013) 529-537. [32] A. Monferini, M. Konstandinidou, Z. Nivolianitou, S. Weber, T. Kontogiannis, P. Kafka, A.M. Kay, M.C. Leva, M. Demichela, A compound methodology to assess the impact of human and organizational factors impact on the risk level of hazardous industrial plants, Reliab. Eng. Syst. Saf. 119 (2013) 280-289. [33] C. Kandemir, M. Celik, Determining the error producing conditions in marine engineering maintenance and operations through HFACS-MMO, Reliab. Eng. Syst. Saf. 206 (2021) 107308. [34] D.D. Wang, G.L. Yang, J.X. Han, Y.Q. Duo, X.F. Zhou, R.P. Tong, Quantitative assessment of human error of emergency behavior for hazardous chemical spills in chemical parks, Process. Saf. Environ. Prot. 189 (2024) 930-949. [35] S.I. Sezer, G. Elidolu, M. Aydin, S.I. Ahn, E. Akyuz, R.E. Kurt, Analyzing human reliability for the operation of cargo oil pump using fuzzy CREAM extended Bayesian Network (BN), Ocean. Eng. 299 (2024) 117345. [36] B. R. Zuo, B. Shuai, W. C. Huang, Research on FRAM accident quantitative analysis method based on fuzzy reasoning, Journal of Safety Science and Technology. 16(07) (2020) 11-17.(in Chinese). [37] A.F. Shapiro, M.C. Koissi, Fuzzy logic modifications of the analytic hierarchy process, Insur. Math. Econ. 75 (2017) 189-202. [38] F. Rodrigues, A. Agra, Berth allocation and quay crane assignment/scheduling problem under uncertainty: a survey, Eur. J. Oper. Res. 303 (2) (2022) 501-524. [39] L. Cheng, J. Hua, X.Z. Zhou, Safety assessment of chemical industrial parks based on AHP-fuzzy comprehensive evaluation method, China Saf. Sci. J. CSSJ 18 (8) (2008) 125-130.(in Chinese). |