Chinese Journal of Chemical Engineering ›› 2025, Vol. 85 ›› Issue (9): 348-354.DOI: 10.1016/j.cjche.2025.03.022
Previous Articles Next Articles
Xin Peng, Rong Huang, Wenran Wang, Jianxin Zhang, Zhenxiao Pan, Yueping Fang, Huashang Rao, Xinhua Zhong, Guizhi Zhang
Received:2024-12-09
Revised:2025-02-22
Accepted:2025-03-05
Online:2025-07-01
Published:2025-09-28
Contact:
Wenran Wang,E-mail:wwrwangwenran@scau.edu.cn;Xinhua Zhong,E-mail:zhongxh@scau.edu.cn;Guizhi Zhang,E-mail:guizhi_zhang@scau.edu.cn
Supported by:Xin Peng, Rong Huang, Wenran Wang, Jianxin Zhang, Zhenxiao Pan, Yueping Fang, Huashang Rao, Xinhua Zhong, Guizhi Zhang
通讯作者:
Wenran Wang,E-mail:wwrwangwenran@scau.edu.cn;Xinhua Zhong,E-mail:zhongxh@scau.edu.cn;Guizhi Zhang,E-mail:guizhi_zhang@scau.edu.cn
基金资助:Xin Peng, Rong Huang, Wenran Wang, Jianxin Zhang, Zhenxiao Pan, Yueping Fang, Huashang Rao, Xinhua Zhong, Guizhi Zhang. Modulating titanium dioxide electron transport layer by self-doping for high-efficiency carbon-based perovskite solar cells[J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 348-354.
Xin Peng, Rong Huang, Wenran Wang, Jianxin Zhang, Zhenxiao Pan, Yueping Fang, Huashang Rao, Xinhua Zhong, Guizhi Zhang. Modulating titanium dioxide electron transport layer by self-doping for high-efficiency carbon-based perovskite solar cells[J]. 中国化学工程学报, 2025, 85(9): 348-354.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.03.022
| [1] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: background, status, and future prospects, Chem. Rev. 119 (5) (2019) 3036-3103. [2] H. Chen, C. Liu, J. Xu, A. Maxwell, W. Zhou, Y. Yang, Q.L. Zhou, A.S.R. Bati, H.Y. Wan, Z.W. Wang, L.W. Zeng, J.K. Wang, P. Serles, Y. Liu, S. Teale, Y.J. Liu, M.I. Saidaminov, M.Z. Li, N. Rolston, S. Hoogland, T. Filleter, M.G. Kanatzidis, B. Chen, Z.J. Ning, E.H. Sargent, Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands, Science 384 (6692) (2024) 189-193. [3] B. Li, D. Gao, S.A. Sheppard, W.D.J. Tremlett, Q. Liu, Z. Li, A.J.P. White, R.K. Brown, X. Sun, J. Gong, S. Li, S. Zhang, X. Wu, D. Zhao, C. Zhang, Y. Wang, X.C. Zeng, Z. Zhu, N.J. Long, Highly efficient and scalable p-i-n perovskite solar cells enabled by poly-metallocene interfaces, J. Am. Chem. Soc. 146 (19) (2024) 13391-13398. [4] W.R. Wang, J.X. Zhang, H.S. Guo, Z.X. Pan, H.S. Rao, G.Z. Zhang, X.H. Zhong, Limitations and progresses in carbon-based cesium lead halide perovskite solar cells, ChemSusChem 17 (11) (2024) e202301761. [5] C. Dong, B.J. Xu, D.M. Liu, E.G. Moloney, F.R. Tan, G.T. Yue, R. Liu, D.Y. Zhang, W.F. Zhang, M.I. Saidaminov, Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency, Mater. Today 50 (2021) 239-258. [6] H.N. Chen, S.H. Yang, Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials, J. Mater. Chem. A 7 (26) (2019) 15476-15490. [7] A.M. Elseman, C.Y. Xu, Y. Yao, M. Elisabeth, L.B. Niu, L. Malavasi, Q.L. Song, Electron transport materials: evolution and case study for high-efficiency perovskite solar cells, Sol. RRL 4 (7) (2020) 2000136. [8] Y. Zhou, X. Li, H. Lin, To be higher and stronger: metal oxide electron transport materials for perovskite solar cells, Small 16 (15) (2020) 1902579. [9] Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications, Chem. Rev. 114 (19) (2014) 10095-10130. [10] Y. Wang, M. I. Dar, L. K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Gratzel, Y. Zhao, Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%, Science 365 (2019) 591-595. [11] Y.Q. Cui, J.J. Shi, F.Q. Meng, B.C. Yu, S. Tan, S. He, C.Y. Tan, Y.M. Li, H.J. Wu, Y.H. Luo, D.M. Li, Q.B. Meng, A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage >1.2 V, Adv. Mater. 34 (45) (2022) e2205028. [12] S. Tan, B.C. Yu, Y.Q. Cui, F.Q. Meng, C.J. Huang, Y.M. Li, Z.J. Chen, H.J. Wu, J.J. Shi, Y.H. Luo, D.M. Li, Q.B. Meng, Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics, Angew. Chem. Int. Ed 61 (23) (2022) e202201300. [13] S. Tan, C.Y. Tan, Y.Q. Cui, B.C. Yu, Y.M. Li, H.J. Wu, J.J. Shi, Y.H. Luo, D.M. Li, Q.B. Meng, Constructing an interfacial gradient heterostructure enables efficient CsPbI3 perovskite solar cells and printed minimodules, Adv. Mater. 35 (28) (2023) e2301879. [14] Y.W. Duan, J.G. Wang, D.F. Xu, P.G. Ji, H. Zhou, Y. Li, S.M. Yang, Z. Xie, X.H. Hai, X.R. Lei, R. Sun, Z.H. Fan, K. Zhang, S.Z. Liu, Z.K. Liu, 21.41%-efficiency CsPbI3 perovskite solar cells enabled by an effective redox strategy with 4-fluorobenzothiohydrazide in precursor solution, Adv. Funct. Mater. 34 (10) (2024) 2312638. [15] J.M. Qiu, X.Y. Mei, M.X. Zhang, G.L. Wang, S.W. Zou, L. Wen, J.M. Huang, Y. Hua, X.L. Zhang, Dipolar chemical bridge induced CsPbI3 perovskite solar cells with 21.86 % efficiency, Angew. Chem. Int. Ed 63 (18) (2024) e202401751. [16] J.X. Zhang, G.Z. Zhang, P.Y. Su, R. Huang, J.G. Lin, W.R. Wang, Z.X. Pan, H.S. Rao, X.H. Zhong, 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells, Angew. Chem. Int. Ed 62 (25) (2023) e202303486. [17] W.R. Wang, X. Peng, J.X. Zhang, J.G. Lin, R. Huang, G.Z. Zhang, H.S. Guo, Z.X. Pan, X.H. Zhong, H.S. Rao, Dimethylamine oxalate manipulating CsPbI3 perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells, J. Energy Chem. 93 (2024) 221-228. [18] Q.X. Zhang, H.C. Liu, X.Z. Wei, Y.F. Song, C.Y. Lv, W.P. Li, L.Q. Zhu, Y.S. Lan, Y.J. Du, K.X. Wang, P.G. Yin, C.Q. Lin, Z.D. Lin, Y. Bai, Q. Chen, S.H. Yang, H.N. Chen, Deploying a dipole electric field at the CsPbI3 perovskite/carbon interface for enhancing hole extraction and photovoltaic performance, Small 20 (40) (2024) 2402061. [19] J.G. Lin, R. Huang, X. Peng, J.X. Zhang, G.Z. Zhang, W.R. Wang, Z.X. Pan, H.S. Rao, X.H. Zhong, Eliminating hole extraction barrier in 1D/3D perovskite heterojunction for efficient and stable carbon-based CsPbI3 solar cells with a record efficiency, Adv. Mater. 36 (33) (2024) e2404561. [20] D.M. Hausmann, R.G. Gordon, Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films, J. Cryst. Growth 249 (1-2) (2003) 251-261. [21] T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H.J. Bolink, L. Jan Anton Koster, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions, ACS Energy Lett. 2 (5) (2017) 1214-1222. [22] W.B. Jiang, H. Loh, B.Q.L. Low, H.J. Zhu, J. Low, J.Z.X. Heng, K.Y. Tang, Z.B. Li, X.J. Loh, E.Y. Ye, Y.J. Xiong, Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction, Appl. Catal. B Environ. 321 (2023) 122079. [23] W.P. Hu, S.F. Yang, S.H. Yang, Surface modification of TiO2 for perovskite solar cells, Trends Chem. 2 (2) (2020) 148-162. [24] Z.L. Wang, R.J. Lin, Y.N. Huo, H.X. Li, L.Z. Wang, Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion, Adv. Funct. Mater. 32 (7) (2022) 2109503. [25] E. Liu, B. Zhu, J. Luo, The Physics of Semiconductors, seventh ed., Publishing House of Electronic Industry, Beijing, 2017. [26] H. Zheng, C.H. Wang, X.T. Zhang, Y.Y. Li, H. Ma, Y.C. Liu, Control over energy level match in Keggin polyoxometallate-TiO2 microspheres for multielectron photocatalytic reactions, Appl. Catal. B Environ. 234 (2018) 79-89. [27] H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, Mg-doped TiO2boosts the efficiency of planar perovskite solar cells to exceed 19%, J. Mater. Chem. A 4 (40) (2016) 15383-15389. [28] M.H. Lv, W. Lv, X. Fang, P. Sun, B.C. Lin, S. Zhang, X.Q. Xu, J.N. Ding, N.Y. Yuan, Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives, RSC Adv. 6 (41) (2016) 35044-35050. [29] T.T. Wu, C. Zhen, H.Z. Zhu, J.B. Wu, C.X. Jia, L.Z. Wang, G. Liu, N.G. Park, H.M. Cheng, Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells, ACS Appl. Mater. Interfaces 11 (21) (2019) 19638-19646. [30] H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Photovoltaics. Interface engineering of highly efficient perovskite solar cells, Science 345 (6196) (2014) 542-546. [31] B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction, J. Mater. Chem. A 4 (15) (2016) 5647-5653. [32] J. Peng, F. Kremer, D. Walter, Y. Wu, Y. Ji, J. Xiang, W. Liu, T. Duong, H. Shen, T. Lu, F. Brink, D. Zhong, L. Li, O. Lee Cheong Lem, Y. Liu, K.J. Weber, T.P. White, K.R. Catchpole, Centimetre-scale perovskite solar cells with fill factors of more than 86 per cent, Nature 601 (7894) (2022) 573-578. [33] D.S. Che Halin, A.W. Azhari, M.A.A. Mohd Salleh, N.I. Muhammad Nadzri, P. Vizureanu, M.M. Al Bakri Abdullah, J.A. Wahab, A.V. Sandu, Metal-doped TiO2 thin film as an electron transfer layer for perovskite solar cells: a review, Coatings 13 (1) (2023) 4. [34] B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells, Chem. Soc. Rev. 44 (22) (2015) 8326-8349. [35] L. Liu, X.B. Chen, Titanium dioxide nanomaterials: self-structural modifications, Chem. Rev. 114 (19) (2014) 9890-9918. [36] W.R. Wang, Y. Lin, G.Z. Zhang, C.T. Kang, Z.X. Pan, X.H. Zhong, H.S. Rao, Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells, J. Energy Chem. 63 (2021) 442-451. [37] D. Bing Wang, D. Meng Zhang, D. Xun Cui, Z.W. Wang, M. Rager, P. Yingkui Yang, P. Zhigang Zou, P. Zhong Lin Wang, P. Zhiqun Lin, Unconventional route to oxygen-vacancy-enabled highly efficient electron extraction and transport in perovskite solar cells, Angew. Chem. Int. Ed. 59 (4) (2020) 1611-1618. [38] J.L. Liu, S. Li, Z.X. Qiu, Y. Liu, C. Qiu, W.H. Zhang, J.H. Qi, K. Chen, W. Wang, C.Y. Wang, Z.Z. Cui, Y.Q. Su, Y. Hu, A.Y. Mei, H.W. Han, Stratified oxygen vacancies enhance the performance of mesoporous TiO2 electron transport layer in printable perovskite solar cells, Small 19 (32) (2023) e2300737. [39] G.Z. Zhang, J.X. Zhang, Z.C. Yang, Z.X. Pan, H.S. Rao, X.H. Zhong, Role of moisture and oxygen in defect management and orderly oxidation boosting carbon-based CsPbI2 Br solar cells to a new record efficiency, Adv. Mater. 34 (40) (2022) e2206222. [40] Y.Y. Liao, J.X. Zhang, W.R. Wang, Z.C. Yang, R. Huang, J.G. Lin, L. Che, G.Y. Yang, Z.X. Pan, H.S. Rao, X.H. Zhong, Anti-dissociation passivation via bidentate anchoring for efficient carbon-based CsPbI2.6Br0.4 solar cells, Adv. Funct. Mater. 33 (20) (2023) 2214784. [41] H.L. Wang, Y.F. Song, Z.D. Lin, W.P. Li, H.C. Liu, X.Z. Wei, Q.X. Zhang, C.Y. Lv, L.Q. Zhu, K.X. Wang, Y.S. Lan, L. Wang, C.Q. Lin, P.G. Yin, T.L. Song, Y. Bai, Q. Chen, S.H. Yang, H.N. Chen, In situ growth of a robust 1D capping layer for stable and efficient CsPbI3 perovskite solar cells without hole transporter, Adv. Energy Mater. 14 (16) (2024) 2304038. [42] J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang, D. Xu, Z. Fang, X. Lei, Y. Li, S.F. Liu, 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand, Adv. Mater. 35 (12) (2023) e2210223. [43] Y.Q. Li, X.Y. Lu, Y.T. Mei, C. Dong, D.T. Gangadharan, K. Liu, Z.J. Wang, S.C. Qu, M.I. Saidaminov, W.F. Zhang, F.R. Tan, Blade-coated carbon electrode perovskite solar cells to exceed 20% efficiency through protective buffer layers, Adv. Funct. Mater. 33 (34) (2023) 2301920. [44] X.B. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (7) (2007) 2891-2959. [45] M. Cargnello, T.R. Gordon, C.B. Murray, Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals, Chem. Rev. 114 (19) (2014) 9319-9345. [46] L. Kavan, L. Steier, M. Gratzel, Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability, J. Phys. Chem. C 121 (1) (2017) 342-350. [47] Y.H. Li, H.B. Xie, E.L. Lim, A. Hagfeldt, D.Q. Bi, Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells, Adv. Energy Mater. 12 (5) (2022) 2102730. [48] D.W. DeQuilettes, J.J. Yoo, R. Brenes, F.U. Kosasih, M. Laitz, B.D. Dou, D.J. Graham, K. Ho, Y.W. Shi, S.S. Shin, C. Ducati, M.G. Bawendi, V. Bulovic, Reduced recombination via tunable surface fields in perovskite thin films, Nat. Energy 9 (2024) 457-466. [49] H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, X.H. Bao, The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment, Chemosphere 50 (1) (2003) 39-46. [50] K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima, Electron-transfer reaction of oxygen species on TiO2Nanoparticles induced by sub-band-gap illumination, J. Phys. Chem. C 114 (2) (2010) 1240-1245. [51] M.T. Greiner, L. Chai, M.G. Helander, W.M. Tang, Z.H. Lu, Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies, Adv. Funct. Mater. 22 (21) (2012) 4557-4568. [52] Z.J. Wu, Y. Wang, L.C. Li, R.K. Zhang, J. Hong, R. Huang, L. Che, G.Y. Yang, H.S. Rao, Z.X. Pan, X.H. Zhong, Improving the electron transport performance of TiO2 film by regulating TiCl4 post-treatment for high-efficiency carbon-based perovskite solar cells, Small 19 (29) (2023) e2300690. [53] A.K. Kyaw, D.H. Wang, V. Gupta, W.L. Leong, L. Ke, G.C. Bazan, A.J. Heeger, Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells, ACS Nano 7 (5) (2013) 4569-4577. [54] Z. Yao, Z. Xu, W.G. Zhao, J.R. Zhang, H. Bian, Y.K. Fang, Y. Yang, S.Z. Liu, Enhanced efficiency of inorganic CsPbI3-xBrx perovskite solar cell via self-regulation of antisite defects Adv. Energy Mater. 11 (23) (2021) 2100403. [55] Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective, Adv. Energy Mater. 12 (20) (2022) 2104030. |
| [1] | Weixiao Ding, Kun Zhao, Shican Jiang, Zhen Huang, Fang He. Ca2MnO4-layered perovskite modified by NaNO3 for chemical-looping oxidative dehydrogenation of ethane to ethylene [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 53-64. |
| [2] | Binxia Zhao, Yijia Gao, Tiancheng Hun, Xiaoxiao Fan, Nan Shao, Xiaoqian Chen. Preparation of PrFexCo1-xO3/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 286-297. |
| [3] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
| [4] | Jingwen Jia, Yue Zhang, Liangsheng Duan, Quanping Wu, Yu Chen, Song Xue. An asymmetrically substituted dithieno[3,2-b:2',3'-d]pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 51-57. |
| [5] | Jian Song, Claudia Li, Shao Zhang, Xiuxia Meng, Bo Meng, Jaka Sunarso. Catalyst-modified perovskite hollow fiber membrane for oxidative coupling of methane [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 412-419. |
| [6] | Jingchun Yan, Weidong Liu, Rong Sun, Shouxi Jiang, Shen Wang, Laihong Shen. Chemical looping catalytic gasification of biomass over active LaNixFe1-xO3 perovskites as functional oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 146-156. |
| [7] | Mingming Guo, Lizhong Liu, Jia-nan Gu, Hongbo Zhang, Xin Min, Jianxing Liang, Jinping Jia, Kan Li, Tonghua Sun. Catalytic performance improvement of volatile organic compounds oxidation over MnOx and GdMnO3 composite oxides from spent lithium-ion batteries: Effect of acid treatment [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 278-288. |
| [8] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
| [9] | Li Yang, Yong Jiao, Dongyan Jia, Yanzhi Li, Chuanhua Liao. Role of oxygen vacancies and Sr sites in SrCo0.8Fe0.2O3 perovskite on efficient activation of peroxymonosulfate towards the degradation of aqueous organic pollutants [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 269-277. |
| [10] | Haiying Wang, Hongjing Han, Enhao Sun, Yanan Zhang, Jinxin Li, Yanguang Chen, Hua Song, Hongzhi Zhao. Production of aryl oxygen-containing compounds from catalytic pyrolysis of bagasse lignin over LaTixFe1-xO3 [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1939-1944. |
| [11] | Yukun Bai, Yuqi Wang, Weijian Yuan, Wen Sun, Guoxia Zhang, Lan Zheng, Xiaolong Han, Lifa Zhou. Catalytic performance of perovskite-like oxide doped cerium (La2-xCexCoO4±y) as catalysts for dry reforming of methane [J]. Chin.J.Chem.Eng., 2019, 27(2): 379-385. |
| [12] | K. M. Manikandan, A. Yelilarasi, S. S. Saravanakumar, P. Senthamaraikannan, Anish Khan, Abdullah M. Asiri. Effect of imidazole based polymer blend electrolytes for dye-sensitized solar cells in energy harvesting window glass applications [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2807-2814. |
| [13] | Huiqi Xie, Yanying Wei, Haihui Wang. Modeling of U-shaped Ba0.5Sr0.5Co0.8Fe0.2O3-δ hollow-fiber membrane for oxygen permeation [J]. , 2017, 25(7): 892-897. |
| [14] | Kezhong Wu, Lei Chen, Weizhen Cui, Bei Ruan, Mingxing Wu. The effect of transition metal ions (M2+=Mn2+, Ni2+, Co2+, Cu2+) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells [J]. , 2017, 25(5): 671-675. |
| [15] | Qing Liao, Yanjie Wang, Yan Chen, Haihui Wang. Novel cobalt-free tantalum-doped perovskite BaFe1-yTayO3-δ with high oxygen permeation [J]. Chin.J.Chem.Eng., 2016, 24(3): 339-344. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
